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Abstract

The main concerns of this thesis are the construction of 6-dimensional manifolds
with SUp3q-structure as well as finding instantons on these spaces.
We begin by giving a brief exposition of how both play a role in heterotic flux com-
pactifications. Here the internal geometry is required to carry an SUp3q-structure
defined by a Killing spinor, and the gauge field background has to be an instanton
with respect to this spinor if the compactifications is to preserve supersymmetry.
Chapters 2, 3 and 4 are devoted to the relevant mathematical framework. First,
we elaborate on the geometry and classification of G-structures, their relation to
nowhere-vanishing, or invariant, sections of associated vector bundles, and connec-
tions on the respective principal bundles in chapter 2.
Chapter 3 then introduces several types of SUp2q- and SUp3q-structures in five and
six dimensions, respectively. We include a section on Sasakian geometry and con-
sider a family of different types of SUp2q-structures on S5 as an example.
The mathematical background is completed by a treatise on the instanton condition
and different ways of implementing it in chapter 4. We investigate the behavior of a
G-structure upon right-action with basepoint-dependent elements of GlpD,Rq and
classify which of these transformations again yield a G-structure. Subsequently, we
provide an answer as to when a pair of G-structures related by such a deformation
induces the same instanton conditions.
In chapter 5 we introduce a general method to obtain SUp3q 6-manifolds from 5-
dimensional manifolds with families of SUp2q-structures. We then show how the de-
formations considered in chapter 4 can be combined with this construction. Starting
from Sasaki-Einstein 5-manifolds M5, we thereby obtain Kähler-torsion and nearly
Kähler SUp3q-structures on sine-cones over M5 as well as half-flat SUp3q-structures
on the cylinder over M5. In an appropriate infinite-volume limit, both sine-cones
approach the Calabi-Yau metric cone over the Sasaki-Einstein space.
Chapter 6 starts with a formalization of the procedure introduced in [1], which al-
lows us to reduce the instanton equations to matrix equations for a perturbation of
a given instanton. Using suitable ansätze, we first reproduce solutions of [2] for the
Kähler-torsion sine-cones and argue that these will be present in all our construc-
tions. On the nearly Kähler sine-cones, we at first obtain these solutions for the
perturbation only, but we then find another sup2q-valued instanton on that space.
The computation of the nearly Kähler canonical connection then provides us with a
suitable ansatz for extensions of that second instanton. Thereby, we independently
prove that the canonical nearly Kähler connection is an instanton and obtain another
solution. On the half-flat cylinders, we obtain solutions with constant perturbation
only, which correspond to new instantons living on M5 rather than on the cylinder.

iii



Contents

1 String Theory and Geometry 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Five String Theories . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Low-Energy Effective Theory of the Heterotic String . . . . . . . . . 5
1.4 Compactification: From Calabi-Yau to Fluxes . . . . . . . . . . . . . 8

2 G-Structures and Intrinsic Torsion 13
2.1 Fiber Bundles and G-Structures . . . . . . . . . . . . . . . . . . . . . 13
2.2 Intrinsic Torsion and Classification of G-Structures . . . . . . . . . . 19

3 Special Geometric Structures 24
3.1 SU(3)-Structures in D = 6 . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 SU(2)-Structures in D = 5 . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Sasakian Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Example: The 5-Sphere . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Geometry of Instantons 45
4.1 G-Structures and Instanton Conditions . . . . . . . . . . . . . . . . . 45
4.2 Implementations of the Instanton Condition . . . . . . . . . . . . . . 49
4.3 Deformation of G-Structures . . . . . . . . . . . . . . . . . . . . . . 51

5 SU(3)- from SU(2)-Structures 61
5.1 General Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Kähler-Torsion Sine-Cones . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Nearly Kähler Sine-Cones . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Half-Flat Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Relevance for String Compactifications . . . . . . . . . . . . . . . . . 72

iv



6 Construction of Instantons 74
6.1 Instantons on Conical 6-Manifolds: General Idea . . . . . . . . . . . 74
6.2 Sasaki-Einstein Structures and the First Instantons . . . . . . . . . . 81
6.3 Instantons on Kähler-Torsion Sine-Cones . . . . . . . . . . . . . . . . 87
6.4 Instantons on Nearly Kähler Sine-Cones . . . . . . . . . . . . . . . . 91

6.4.1 Reduction for Pushforward SU(2)-Structure . . . . . . . . . . 91
6.4.2 Canonical Connection of the Nearly Kähler Sine-Cone . . . . 93
6.4.3 Reduction for Deformed SU(2)-Structure . . . . . . . . . . . . 99

6.5 Interrelations and the Large-Volume Limit . . . . . . . . . . . . . . . 102
6.6 Instantons on Half-Flat Cylinders . . . . . . . . . . . . . . . . . . . . 108

7 Conclusions and Outlook 113

Acknowledgments 116

A Principal Fiber Bundles and Connections 117
A.1 Principal Fiber Bundles and Associated Bundles . . . . . . . . . . . 117
A.2 Connections and Covariant Derivatives . . . . . . . . . . . . . . . . . 124

Bibliography 129

v





Chapter 1

String Theory and Geometry

1.1 Introduction

Interest in string theory has led to vast progress in several areas of current research,
among which itself is only one of many. String theory has repeatedly pointed out
where the frontiers of our present insight into physics and mathematics are located
and often even how these may be extended. However, from a physicists point of
view, string theory at its present stage is a purely hypothetical concept. There is
no feature of this framework which could be used in order to experimentally dif-
ferentiate between string theory and the somewhat disjoint union of quantum field
theory of elementary particle physics and general relativity, the two pillars of todays
research in high-energy physics. This is mostly because the discrepancies between
these frameworks would become apparent only at very high energies not accessible
in experiments at this point.
While much is known about the roof that is supported by these pillars, there is no
conclusive answer as to what mutual foundation they rest on. Nevertheless, string
theory appears to be a good candidate for such a unifying concept. It is an ex-
traordinarily rich framework, allowing for intuitive limits in which it reproduces the
physics of elementary particles and general relativity, while avoiding their shortcom-
ings in high-energy regimes. Also, on the purely mathematical side, it has shown
to be fruitful, as the theory is so intricate that at several points physical research
implies that there exist ways in certain directions, which one cannot really uncover
before improving the mathematical toolkit. New techniques drawn from research in
string theory keep having important applications to statistical and particle physics,
differential and algebraic geometry and topology, and many more active fields of
current research.
In order to understand the physics behind a theoretical model, it has repeatedly
proven valuable to find explicit solutions to its equations. These can then be ana-
lyzed and interpreted, and have often led to deeper insights into the physical im-
plications and scope of the theory. Some of the most prominent examples are the
Lienert-Wiechert potentials in electromagnetism, Onsager’s solution to the Ising
model, the Schwarzschild and FLRW metrics in general relativity, and perhaps most
recently the AdS5 ˆ S

5 solutions of type II string theory.
Here we will work towards explicit solutions to heterotic supergravity, the low-energy
effective theory of the heterotic string. In particular, we will focus on the instanton
equation, which is one of the conditions for unbroken supersymmetry, and whose so-
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1 String Theory and Geometry

lutions have been successfully extended to solutions of the complete set of heterotic
supergravity equations for example in [2–4].
Although motivated by the physical framework of string theory, the problem we are
considering is of mathematical and, in particular, geometrical nature. Therefore, we
choose to employ a very mathematical style of writing and aim at a high level of
mathematical rigor in this work.

The outline of this thesis is as follows: In chapter 1 we will first review the subject
of string compactifications very briefly, thereby introducing the relevant equations.
We see that the presence of a generator of supersymmetry imposes certain restric-
tions on the geometry of the spacetime background M . More precisely, it implies
the existence of a G-structure on M .
Therefore, we explore G-structures and some of their geometric features in chap-
ter 2. We emphasize the point of view of principal fiber bundles, which are the
very foundation of the mathematics we need to pursue our goal of finding solutions
to the instanton equations. After introducing several different characterizations of
G-structures, we turn to connections on the principal bundles that the G-structures
are subbundles of and review the classification idea of Gray and Hervella [5] in terms
of such connections.
We review the definition of SUp2q-structures in 5 and SUp3q-structures in 6 dimen-
sions, as well as some of their geometric features, in chapter 3. Additionally, we
provide a brief overview of Sasakian geometry.
Chapter 4 concludes the part on the mathematical background by elaborating how
G-structures induce instanton conditions and how these can be formulated in dif-
ferent ways. In the last section of that chapter, we consider certain deformations of
G-structures and prove a classification (proposition 4.3.1) of the subclass of these
deformations that leads from a given G-structure to a new one. In an extra step,
we derive an algebraic constraint on the deformations which is equivalent to the
property that the original and the new G-structure define precisely the same instan-
tons in corollary 4.3.5. In particular, G-structures related by deformations of the
considered type have precisely the same instanton moduli spaces.
We begin chapter 5 by giving a general prescription of how one can obtain several
SUp3q-structure 6-manifolds from SUp2q-structure 5-manifolds in proposition 5.1.1.
The combination of this result with the deformations of G-structures investigated
in chapter 4 enables us to explicitly construct several types of G-structures on con-
ical extensions of a given manifold. We apply this procedure to Sasaki-Einstein
5-manifolds and obtain Kähler-torsion and nearly Kähler SUp3q-structures on sine-
cones as well as half-flat SUp3q-structures on cylinders over these spaces.
Chapter 6, as the final chapter of this thesis, is devoted to the construction of in-
stantons on these spaces. First, culminating in proposition 6.1.4, we formalize a
procedure introduced in [1]. This procedure reduces the instanton condition on
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1.2 The Five String Theories

gauge fields to a set of matrix equations on a perturbation of a given instanton.
Subsequently, we carry out this reduction in several situations on the spaces con-
structed in chapter 5. Here the formal results obtained throughout this thesis find
numerous applications and endow us with immediate insight into subtle details of
the mathematical problems under consideration.

1.2 The Five String Theories

We begin with a very compact tour from some of the basics of string theory to the
point where this thesis is embedded into current research. Therefore, this chapter
is a merging of different introductory texts on string theory, mostly taken from the
textbooks [6] and [7].

In contrast to quantum field theory, in string theory the fundamental building blocks
of matter are assumed to be strings. These are one-dimensional objects of very small
length. Strings are assumed to move through spacetime, their motion being governed
by the Polyakov action [6]

SP rh,Xs “ ´
1

4πα1

ż

Σ
d2σ

a

´h.. h
αβ pBαX

µq pBβX
νq gµνpXq. (1.2.1)

Here X : Σ Ñ MD is an embedding of the string world sheet Σ into the spacetime
manifold MD, g is a Lorentzian metric on M , and h is a Lorentzian metric on Σ,
an auxiliary field. The notation h.. indicates that the metric on TMD is to be used,
rather than the metric it induces on T ˚MD. α1 “ 1

2πT is called the Regge slope,
where T is the tension of a string. Due to the X-dependence of g, this action is
highly non-polynomial. However, assuming MD to be Minkowski space one can
transform this action to a polynomial one by choosing the conformal gauge.
Viewing theXµ as massless fields on the world sheet, they are seen to satisfy the wave
equation., whence the decompose into left- and right-moving parts. By canonical
quantization of their Fourier modes, one obtains creation and annihilation operators.
This points out a very important duality in string theory. The quantities on the
world sheet can on the one hand be viewed as observables on spacetime, as for
example coordinates of MD. On the other hand, however, they may be considered
as quantum fields on Σ. One can then interpret these geometrically as measuring
certain quantities assigned to points of the string world sheet, as for example the
position of a certain point σ P Σ in spacetime.
In analogy to the picture of quantum field theory, strings are assumed to be able to
appear at arbitrary points in spacetime, and their excitations can then be interpreted
as excitations of effective quantum fields. (This is a picture which would actually
require a string field theory, which is an active field of current research. For several
results and further references see e. g. [8, 9].)
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1 String Theory and Geometry

The analysis of the particle spectrum of the above theory leads to remarkable and,
yet, peculiar conclusions. We list just the most important ones:
• The theory necessarily contains a tachyonic particle, i. e. one with negative
mass square. This cannot be interpreted in a phenomenologically consistent
way.
• Since the quantum fields on Σ are purely bosonic, the spacetime theory does

not contain fermionic particles.
• Different ways of quantizing the action (1.2.1) coincide for D “ 26 only,
whereas we have observed four spacetime dimensions so far.
• Most remarkably, the spectrum contains a massless particle of helicity 2, whose
interactions in the emergent spacetime field theory coincide with those induced
by the Einstein-Hilbert action up to corrections of order α1.

The last property implies that general relativity is emergent in the effective spacetime
field theory of the quantized string theory up to corrections suppressed by α1. While
this may seem surprising, it may be due to the fact that in two dimensions, as on
the string world sheet, the Einstein-Hilbert action is topological. Hence it shifts the
action by a constant only. This means that the Polyakov action (1.2.1) is in fact
the full theory of D real massless scalar fields living on Σ, coupled to a gravitational
field. Being trivial, the Einstein-Hilbert part of the action can of course be quantized
in two dimensions. Here one takes for granted that quantization is consistent with
the assumption that it is always possible to go to the conformal gauge. That this
holds true is more apparent in path integral quantization, where all fields are treated
as classical ones in calculations.

Considering the quantum field theory on the world sheet as fundamental, one may
alter this two-dimensional model for example by the inclusion of supersymmetry.
One can introduce either global supersymmetry on the world sheet fields (RNS
formalism) or local supersymmetry on the target space coordinates (GS formalism)
[10,11]. Either way this adds new fermionic fields to the world sheet, which in turn
add fermionic excitations to the spectrum of the effective field theory of the bosonic
string.
Thereby, the fermion problem of the bosonic string gets cured. However, the tachyon
problem must be addressed by hand. Either one has to eliminate half the fermionic
degrees of freedom independently in the left- and right-moving sectors of the RNS
string, or one has to choose a chirality of the anticommuting coordinates on the target
space. Both of these procedures remove the tachyonic state from the spectrum.
The dimension problem is affected, but not solved by the inclusion of supersymmetry.
The critical dimension of superstring theories turns out to be D “ 10.
Of these superstring theories there exist three versions, namely:
• Type IIB: Oriented open and closed superstrings with the same chiralities in
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1.3 Low-Energy Effective Theory of the Heterotic String

the right and left-moving sectors,

• Type IIA: Oriented open and closed superstrings with opposite chiralities in
the right and left-moving sectors,

• Type I: Unoriented open and closed superstrings.
These are not the only consistent versions of superstring theory. There have been
constructed two so-called heterotic superstring theories, which contain closed strings
only. In contrast to the aforementioned theories, their left-moving sector consists of
the left-moving sector of theD “ 26 bosonic string with 16 of the bosonic coordinates
compactified on a torus. Their right-moving sector coincides with that of the D “ 10
superstring. The name heterotic stems from this asymmetry of the right and left-
moving sectors. The special feature of these theories is a local world sheet symmetry
in the 16 compactified bosonic coordinates. Generically, this is a global Up1q16-
symmetry, but for special radii of the internal torus it gets enlarged to non-Abelian
symmetry groups. There are only two such symmetry enhancements possible, and
the resulting theories are named after the Lie groups of these global symmetries.
They are
• H(E8 ˆ E8): Heterotic superstrings with symmetry group E8 ˆ E8,

• H(SOp32q): Heterotic superstrings with symmetry group SOp32q.
All of these five known versions of superstring theories give rise to effective field
theories in their perturbative expansions. These differ in certain features, as for
example in their particle spectra. Despite this, the five string theories turn out
to be connected by certain non-perturbative dualities, leading to the conjecture
that there exists an undiscovered framework of which the string theories are certain
perturbative sectors.
As we are still to explore even the low-energy phases of this framework, the concern of
this thesis lies within a particular branch of the string theories, namely the heterotic
theories. For this reason, we focus on heterotic strings in the remainder of this
chapter.

1.3 Low-Energy Effective Theory of the Heterotic String

As explained in the previous section, strings admit certain modes of oscillation,
which appear as particles in the effective theory of the string theory under consid-
eration. That is, one assumes strings to potentially provide excitations at any point
of spacetime, just as a field would do. In particular, on a length scale which is
macroscopic compared to the string length strings will effectively behave like point
particles. In other words, the high-energy phase of string theory changes to a phase
of effective point particles in low-energy regimes, and an effective description in
terms of qutnum fields becomes appropriate.
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1 String Theory and Geometry

In these regimes only the massless excitations of strings have to be taken into ac-
count for the particle content of the effective field theories. Nevertheless, one has to
keep in mind that all excitations are relevant in the string theory computations of
scattering processes of string excitations. Here, massive modes still occur as internal
legs in scattering processes. Their contributions to scattering processes affect the
effective field theory, thus giving rise to stringy corrections of low-energy physics.
In order to arrive at a proper field theory, one then needs an effective Lagrangian
for the massless fields. This may be obtained by remodeling the interactions of the
string modes that encode the effective particle content on the corresponding fields.
As the effective fields arise from strings, a string of the respective theory should
interact with a background of these fields. This turns out to be manifest due to
the following important fact: An amplitude for the propagation of a string through
a background of its effective fields can be computed in two different ways. First,
one can compute it from the free string action with certain coherent insertions of
vertex operators. That is, one considers a string that interacts with the background
of strings which produce the respective field, and that propagates as a free string
between these interactions. Second, the same amplitude can be computed from the
action of a string moving through a background of just these effective fields, which
are taken to interact with the quantum fields on the string world sheet. Remark-
ably, these two computations give precisely the same result. Moreover, as in the first
picture the propagation of strings in such a background can be computed from just
the standard action, i. e. the one without additional background fields, the world-
sheet theory still has (super)conformal symmetry. This should then be present in
the second picture as well. Again remarkably, the conditions on the background
fields implied by the requirement that the conformal invariance of the world sheet
theory be maintained precisely coincide with the field equations as derived from the
low-energy effective spacetime actions.

The field content of the low-energy effective field theory of the heterotic string is
that of N “ 1, D “ 10 supergravity coupled to N “ 1, D “ 10 super-Yang-Mills
theory. Its bosonic sector consists of the real scalar dilaton field Φ, a gauge field A
for either a SOp32q or an E8 ˆE8 gauge symmetry on spacetime, a metric G and a
2-form potential B2. The fermionic sector is formed by the supersymmetry partners
of the bosonic fields, which are the dilatino λ, a gaugino χ and a gravitino ψ.
As fields on spacetime, these are related via local supersymmetry transformations
that can be found e. g. in [11]. We consider effects of quantum fluctuations as small,
thus splitting the fields into quantum fluctuations and classical background fields.
These classical fields may be considered as the vacuum expectation values of the
quantum fields. Of course, all this is only consistent in the low-energy region of the
theory, which is the regime we are studying.
As it is for common local symmetries, a field configuration does not break supersym-
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1.3 Low-Energy Effective Theory of the Heterotic String

metry spontaneously if it is invariant under the symmetry. Therefore, if we intend
not to break supersymmetry at this stage, we have to require all supersymmetry
variations of the fields to vanish. A great simplification of the coupled system of su-
persymmetry transformations is achieved by the restriction to field configurations in
which all the fermionic fields vanish identically. For example, all the supersymmetry
variations of the bosonic fields will vanish, as they are built from the fermionic field
content.
This leaves us with the supersymmetry transformations as considered for instance
in [10]:

δ ψ “ ∇` ε,

δ λ “ γ
`

dΦ´ 1
2 H

˘

pεq,

δ χ “ ´
1
2 γpF

Aqpεq.

(1.3.1)

Here, γ : Λ˚T ˚M Ñ ClpTM, gq, µa ea ÞÑ µaγa is the isomorphism from the exterior
tensor algebra of the cotangent bundle of M into the Clifford bundle ClpTM, gq of
pM, gq, where M is the spacetime manifold. Clifford multiplication is understood
as a map ClpTM, gq ÞÑ EndpSq, for S being a spinor bundle over M . H is a
field-strength 3-form subject to the anomaly cancellation condition

H – dB2 `
α1

4
`

CSpω´q ´ CSpAq
˘

, (1.3.2)

where CSpω´q and CSpAq denote the Chern-Simons 3-forms associated with the con-
nections ω´ and A respectively, and FA is the field strength of the gauge connection.
The connections ∇˘ differ from the Levi-Civita connection by a totally antisymmet-
ric torsion term, i. e. with 5g ˝ T P Ω3pMq. In local coframes their connection forms
are given by

pω˘qabc “ pω
gqabc ˘

1
2 Habc. (1.3.3)

ε is the generator of supersymmetry and, therefore, has to be a nowhere-vanishing
spinor field on M . As indicated above, unbroken supersymmetry requires all these
variations to vanish identically.
Under the restriction of vanishing fermionic fields, only the bosonic fields are dy-
namical, whence the low-energy effective action contains these only. To first oder in
string corrections, the bosonic sector of the low-energy effective action for the field
theory emergent from the heterotic strings reads [12]

S “
1

2κ102

ż

d10X
?
´g.. e

´2Φ
ˆ

Scpgq ` 4p∇Φq2 ´ 1
2 |H|

2
˙

`
1

2 G10
2

ż

d10X
?
´g.. e

´2Φ
ˆ

tr
`

|R`|2
˘

´ tr
`

|FA|2
˘

˙

`Opα12q.
(1.3.4)
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1 String Theory and Geometry

Here g is the spacetime metric, Scpgq the scalar curvature computed from it, and
R` is the curvature of the connection ∇`. The coupling constants are related by
G10

´2 “ α1

4 κ10
´2 [6].

The field equations that one obtains upon variation of the fields read [12]

0 “ Ricpgqµν ` 2p∇g dΦqµν ´
1
4 Hµρλ H

ρλ
ν

`
α1

4

ˆ

R´µρλκR
´ ρλκ
ν ´ tr

`

FAµρ F
A ρ
ν

˘

˙

,

0 “ Scpgq ` 4 ∆Φ´ 4 |dΦ|2 ´ 1
2 |H|

2 `
α1

4 tr
`

|R´|2 ´ |FA|
˘

, (1.3.5)

0 “ dA
`

˚ pe´2Φ FAq
˘

` ˚H ^ e´2Φ FA,

0 “ d
`

˚ pe´2ΦHq
˘

.

The low-energy field theory of the heterotic string theory is often called heterotic
supergravity. Having established the fundamental framework, we would like to ob-
tain solutions to its field equations. This is desirable since they may feature special
properties that do not occur in other theories of spacetime. It is possible, moreover,
that important consequences of the theory may not be seen from the field equations
directly, but rather become apparent from its solutions only.
In general relativity, for example, solutions like the Schwarzschild and Friedmann-
Lemaître-Robertson-Walker metric have had a tremendous impact on research in
this field. The former introduced the concept of event horizons, whose existence
had not been considered until then. The latter, on the contrary, became the first
Standard Model of cosmology, already bearing evidence for the big bang hypothe-
sis. Thus, solutions of special type hopefully would enable us to learn more about
the physical content of string theory eventually. However, general solutions will not
yield phenomenologically acceptable models. We still have to refine the geometry of
spacetime.

1.4 Compactification: From Calabi-Yau to Fluxes

The inclusion of supersymmetry yields a great leap forward in matching string the-
ory with reality. Nevertheless, there remain open problems, some of which are quite
conceptual in nature. It turns out that at this point one is several steps away from
even phenomenologically matching observations.
First, there is the issue that supersymmetry has not been observed so far, whereas
it is intrinsic to all superstring theories. This may be resolved, for example, by
spontaneous symmetry breaking in the effective field theory. Furthermore, it is not
inherent in the framework that the low-energy effective theory will contain the spec-
trum of physical particles we observe. At the electroweak scale, the effective theory
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1.4 Compactification: From Calabi-Yau to Fluxes

has to contain the Standard Model of elementary particles and general relativity,
possibly with other particles forming dark matter.
This is connected to the third, perhaps most obvious and urgent problem, the di-
mensions problem. All superstring theories can be consistent on the quantum level
only if the spacetime the strings live in is of dimension D “ 10. This, of course, is
in harsh contrast to the evident fact that we observe only 4 spacetime dimensions.
One way out of this dilemma is to assume that in 6 of its 10 independent directions
spacetime is of very small size. This procedure is called compactification. Although
not the most general, a straightforward ansatz for such a spacetime is a direct prod-
uct geometry M10 “ M4 ˆM6. For this to resolve the dimensions problem, the
internal space M6 has to be a compact manifold.
This also has an effect on the particle content of the effective theory. The particles
we observe can be described as excitations of fields with components transforming
in representations of Spinp1, 3q. However, in all superstring theories, the string exci-
tations are states in representations of Spinp1, 9q. Assume a spacetime as described
above was endowed with a metric g such that TM4 Kg TM

6. This allows to choose
orthonormal bases on the two factors separately Therefore the representations of
Spinp1, 9q splits into representations of Spinp1, 3q ˆ Spinp6q, thus leading us closer
to the desired physical behavior.
We may then, as a first step, search for field configurations in which the only non-
trivial field on M4 is the metric. These will appear as vacuum configurations on the
effective spacetime M4. In particular, this means that any Spinp1, 3q field content
is trivial as this comprises the field content of the effective 4-dimensional theory.
Thus, the bosonic background fields Φ, FA and H have non-vanishing components
along the internal space only.
Furthermore, assume that the effective spacetime M4 has certain symmetry prop-
erties, as for example that it is a locally symmetric space. This implies that around
every x P M4 there exists an open subset Ux Ă M4 together with a local isome-
try sx : Ux Ñ Ux satisfying psxq˚|x “ ´ITxM4 . In order for this symmetry to be
an actual feature of the effective theory in 4 dimensions, it must not be sponta-
neously broken by the physics in the internal, compact directions. This has the
following implications: If H has non-vanishing components only in the internal
directions, we obviously have ps˚xHq|x “ H|x and also ps˚x Φqpxq “ Φpxq, as we
take sx to act as the identity on M6. We could as well investigate the change
of these fields in certain directions. This must then be invariant under the local
isometries as well, since sx is defined on a whole neighborhood of x. That is, we
should require sx˚pLX Hq|x “ pLX Hq|x for any X P TxM

4. However, we have
sx
˚pLX Hq|x “ pL´X Hq|x “ ´pLX Hq|x. Thus, H and by the same reasoning Φ

may not depend on the macroscopic directions, if we require, for instance, locally
symmetric effective spacetimes. Assuming that the gauge sector lives on a princi-
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1 String Theory and Geometry

pal bundle over M6, this must also hold true for local representations of the gauge
field A and, therefore, as well for its field strength FA and Riemannian metric g6.
As a very special case, we might search for compactifications in which the effective
spacetime M4 is Minkowski space. This is covered by the preceding argumentation.
It thus becomes interesting to study 6-dimensional Riemannian manifolds carrying
the fields Φ, A and H. As the spectrum and interactions of the superstrings are
supersymmetric, the effective field theories of superstring theories feature super-
symmetry by construction. Therefore, there must be a nowhere-vanishing spinor ε
that generates the supersymmetry transformations. Note that, as argued above, the
Spin-structures decompose for direct product ansätze for the background spacetime,
and the nowhere-vanishing spinor has to factorize as ε10 “ ε4 b ε6. In particular, ε6
is a nowhere-vanishing spinor onM6, i. e. it is independent of the coordinates ofM4.
It spans a one-dimensional subbundle of the spinor bundle on M6, whose structure
group must therefore be reducible to a proper subgroup of Spinp6q. This turns out
to be SUp3q, which then also is the structure group of M6. We refer to section 2.1
for a mathematical treatment of G-structures.

The task is thus to find 6-dimensional manifolds with SUp3q-structure, and then
construct solutions to the field equations (1.3.5) of the low-energy effective field the-
ory.
This system simplifies further if we put H “ 0 and Φ “ const. In this situation,
the vanishing of the first supersymmetry variation in (1.3.1) requires the existence
of a spinor that is parallel with respect to the spin connection induced by the Levi-
Civita connection of the metric. Such a parallel spinor is either trivial or nowhere-
vanishing. In the latter case this does not only restrict the holonomy group of M6

to be contained in SUp3q, but one can also show that Riemannian manifolds car-
rying a parallel spinor must be Ricci-flat. This restricts the internal space to be a
Calabi-Yau manifold, since these are compact 2n-dimensional manifolds with holon-
omy group in SUpnq [6].
Compactification on Calabi-Yau spaces hence yields a set of field equations much
simpler than the original one and enables us to use the rich mathematical tools
developed within this framework. Compactifications on Calabi-Yau manifolds have
been studied extensively since the early days of superstring theories, for instance
in [11,13] and references therein.
Taking a closer look it has been discovered that these models suffer from problems
unacceptable from a phenomenological point of view. The reason is that certain
geometric degrees of freedom of the internal space are not coupled to the remaining
theory. These directions in the space of possible structures on the internal manifold
are called moduli. Due to the decoupling of the geometries of M4 and M6, they can
be chosen independently at every point x PM4. Therefore, they appear as fields on
the effective spacetime with values in the moduli space of the internal manifold. In
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Calabi-Yau compactifications, these moduli fields turn out to not have a potential.
Therefore, their vacuum expectation values are not under control. However, moduli
may determine observable features of the theory, as for example the size of the in-
ternal space. This, of course, has to be restricted in order not to spoil consistency
with the phenomenological motivation of the compactification procedure.

Letting go of the restriction Φ “ 0 and H “ 0, which lead to compactifications on
Calabi-Yau manifolds, we arrive at the subject of flux compactifications. These are
more general compactifications allowing for non-trivial H-field strength and dilaton
field. These might introduce potentials for the moduli fields via Yukawa couplings
and could, therefore, make the vacuum expectation values of the moduli fields take
phenomenologically acceptable values. While this works in certain examples (see for
instance [13,14] and references therein), so far there has not been found a mechanism
which fixes the moduli problem generically.
For the models we consider we keep the simplifying assumptions that led to H, FA
and Φ being non-trivial on the internal space only. Such compactifications of the
heterotic string theories have first been investigated in [15].
Still, compactifications do not simply arise from string theory, but one has to choose
a geometric ansatz and then investigate the low-energy effective field theory in or-
der to find vacuum solutions. It is hoped that ultimately a mechanism will be
found which determines spacetime and its geometry dynamically. However, it seems
unlikely that this is possible without considering back-reactions of strings to the
background geometry. For example, we first might choose a certain geometry of the
internal space M6, make ansätze for some of the fields and then try to extend this
set of fields to a solution of either the heterotic supersymmetry or supergravity equa-
tions. The equations for heterotic supersymmetry, or BPS equations, are given by
requiring the supersymmetry variations (1.3.1) to vanish identically, while the field
equations of heterotic supergravity are (1.3.5). Such extensions have successfully
been constructed for example in [12], starting from solutions to the gauge sector
and making an ansatz for H.

This is the motivation for this thesis. We will construct 6-dimensional manifolds
with SUp3q-structure that have a geometry better accessible than that of just a
generic SUp3q 6-manifold. Subsequently, we will search for solutions to the so-called
instanton equation induced by these SUp3q-structures. The instanton equation im-
plies the Yang-Mills equations with a certain torsion term, thus yielding an ansatz
for H. Also, it implies the gravitino equation, which is the requirement that the
third variation in (1.3.1) vanishes. Furthermore, it has been shown [16] that the
heterotic supergravity equations (1.3.1) together with the anomaly cancellation con-
dition (1.3.2) imply the field equations (1.3.5) in quite general situations.
However, in the next three chapters, we will take a detour through the geometry of
G-structures at first. We will see how one can classify these, before we specialize to
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SUp2q-structures in 5 dimensions and SUp3q-structures in 6 dimensions. We then
investigate the instanton condition induced by a G-structure in general and finally
bring full circle this detour by seeing how the spinorial version of the instanton equa-
tion arising in (1.3.1) is linked to the more general version of the instanton condition
we will encounter in section 4.1.
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Chapter 2

G-Structures and Intrinsic Torsion

2.1 Fiber Bundles and G-Structures

In this section, we introduce the notion of a G-structure on a principal bundle. The
results obtained here are already known in the literature [17–19], but we choose to
provide an exposition of the principles for the sake of completeness.

Gauge theories, spin geometry and G-structures are formulated in the language
of principal fiber bundles and associated vector bundles. Their construction and
elaboration of their properties can be found in the literature, as for example in [18].
This also is the reference for the short exposition in appendix A, to which we refer
the reader for a compact introduction to the formalism and the notation we use
throughout this text.

Consider a principal fiber bundle pP, π,M,Hq and a representation ρ of H on a k-
dimensional K-vector space V . This data gives rise to the associated vector bundle

E “ P ˆpH,ρq V. (2.1.1)

Assume that E is endowed with a non-vanishing section such that around every
x P M there is a local frame of E with respect to which this section has certain
fixed, constant coefficients.
As an example, one may think of a Riemannian metric g P Γp

Λ2T ˚Mq onM . Around
every point of M one can find local orthonormal frames for g. Hence, a Riemannian
metric is a section in a vector bundle associated to F pTMq having the aforemen-
tioned property.
Any section with this property also defines distinguished bases of the fibers, namely
it singles out those bases with respect to which it has constant coefficients. Different
bases with this property are related by linear transformations that leave these coef-
ficients unchanged. This defines a subgroup G of GLpk,Kq, namely the stabilizer of
the constant coefficients in V . In the example of a Riemannian metric, this group
is precisely the group OpDq of orthonormal transformations.
Again one can show (and we will do so below) that the set of these bases defines a
principal G-bundle, which is in particular a reduction of the frame bundle. This is
called a G-structure.

We will now make this more heuristic exposition mathematically precise. The fol-
lowing defines a G-structure to be a special type of bundle reduction (see A.2 for the
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2 G-Structures and Intrinsic Torsion

definition of a bundle reduction). It is a slightly generalized version of the notion
given in [17].

Definition 2.1.1: Let pP, π,M,Hq be a principal H-bundle over M . We define a
G-structure on P to be a reduction pλ, ιq of P to a principal bundle pQ, π,M,Gq,
where ι is the inclusion map.
For H “ GLpD,Rq, G Ă H we refer to a G-structure on F pTMq as a G-structure
on M .

In fact, one could use more general bundle reductions (e. g. [18]), but for our purposes
this will be sufficient. However, this definition puts restrictions on λ.

Lemma 2.1.2: In the above definition of a G-structure, λ must always be injective.

Proof. Assume there are g, g1 P G such that g ‰ g1 and λpgq “ λpg1q. Then, for
q P Q, RP

λpgqιpqq “ RP
λpg1qιpqq and equivalently, ιpqq “ RP

λpg1 g´1qιpqq. But, since ι is
injective, this is true if and only if q “ RQ

g1 g´1q. As RQ is simply transitive, this
implies g “ g1.

Thus, the Lie group homomorphisms we can use in the construction of G-structures
due to definition 2.1.1 are injective. As ιpQq Ă P is an embedded submanifold that
is closed under the right-action of G given by g ÞÑ RP

g , the λ are embeddings of G
into H. Therefore, the following definition is equivalent to definition 2.1.1.

Definition 2.1.3: Let pP, π,M,Hq be a principal H-bundle. A G-structure on P
is a principal subbundle pQ, π,M, λpGqq of P having structure group λpGq for some
embedding λ : G ãÑ H.

We will make use of definition 2.1.3 in the following, and we will most of the time
identify G with its embedding λpGq. Thus, we drop the explicit λ and view the
structure group of the G-structure as a subgroup of GLpD,Rq.

In the heuristic approach above, we used a certain section of an associated vector
bundle to define a principal subbundle of F pEq and thus a G-structure. A Rieman-
nian metric, for instance, defines a unique OpDq-structure on M by singling out the
subbundle of F pTMq consisting of orthonormal frames. We may now ask whether
there is a general link between sections of the above kind and G-structures on a
principal bundle.
First, we need the statement that bundles associated to P may also be constructed
from the reduced principal bundle of a G-structure.
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2.1 Fiber Bundles and G-Structures

Lemma 2.1.4: Assume that the principal bundle pP, π,M,Hq admits a G-structure
pQ, π,M,Gq, and that E “ P ˆpH,ρq V is an associated vector bundle for P and the
H-representation ρ on V .
Then we have

E “ P ˆpH,ρq V “ QˆpG,ρ|Gq V. (2.1.2)

Proof. E consists of equivalence classes rp, vs, p P P, v P V , where

rp, vs “ rRh p, ρph
´1qpvqs @h P H. (2.1.3)

By the transitivity of the H-action on the fibers of P, to every p P P we can find an
h P H such that Rh p “ q P Q. That is, every rp, vs P PˆpH,ρqV has a representative
rq, ρph´1qpvqs where q P Q.
This, however, is the very definition of an element of Q ˆpG,ρ|Gq V , due to the fact
that Q Ă P is a principal subbundle.
By the same reasoning, every rq, vs P Q ˆpG,ρ|Gq V is already an element of the
associated bundle P ˆpH,ρq V .

Note that it is crucial that the bundles are exactly identical and not just isomorphic,
as they would be if we had used more general bundle reductions instead of embedded
subbundles. Perhaps the most common example of this assertion is that the tangent
bundle TM of a semi-Riemannian manifold can be built from either any local frames
or just the orthonormal frames, i. e.

TM “ F pTMq ˆpGLpD,Rq,ρq RD “ SOpM, gq ˆpSOpp,qq,ρq RD. (2.1.4)

Here, SOpM, gq is the bundle of orthonormal frames defined by g, and ρ is the
standard representation of GLpD,Rq on RD.

Of course, ρ can be any H-representation on V . In particular, it is not required
to be irreducible. Furthermore, even if ρ is irreducible as an H-representation,
its restriction to G as a G-representation on V will in general be reducible. In
this case, the G-representation decomposes into irreducible representations (at least
for G being compact). The induced decomposition of V “

ÀN
i“1 Vi into invariant

subspaces Vi furnishes a decomposition of E.

Definition 2.1.5: We call a vector bundle E “ P ˆpH,ρq V irreducible, if the
representation ρ of H on V is irreducible.

Note that the property of irreducibility depends on the structure group principal
bundle, that E is associated to. Thus, we have

15



2 G-Structures and Intrinsic Torsion

Proposition 2.1.6: Consider pP, π,M,Hq a principal H-bundle over M admitting
a G-structure Q, where G is compact subgroup of H. Let ρ be a representation of H
on the vector space V .
Then ρ|G will in general be reducible to irreducible representations ρi, and there is
a decomposition of E “ P ˆpH,ρq V :

E “
N
à

i“1
QˆpG,ρiq Vi “

N
à

i“1
Ei, (2.1.5)

where each of the Ei, i “ 1, . . . , N is irreducible as a vector bundle associated to Q.

This yields

Corollary 2.1.7: If one of the terms in the splitting (2.1.5) is a one-dimensional
vector bundle associated to Q via the trivial representation of G, then this vector
bundle allows for a nowhere-vanishing section. Furthermore, there is a section which
has fixed local representation with respect to any local section s of Q. Every such
section of a vector bundle is parallel with respect to every connection on Q.

Proof. Define a section e P ΓpEi0q via

epπpqqq– rq, vi0s (2.1.6)

for a fixed vi0 P Vi0 . Because ρi0 is trivial, this is independent of the choice of the
point of the fiber. Therefore, this yields a globally well-defined, nowhere-vanishing
section. In particular, its local representation is given by vi0 with respect to any
q P Q, and, thus, also with respect to any local section of Q.
From this we see that the pendant of e onQ is a constant map vi0 : QÑ Vi0 , q ÞÑ vi0 .
Additionally, ρi0˚ “ 0, whence DA vi0 “ 0 @A P CpQq.

Equivalently, one could choose an arbitrary non-zero element of Ei0|x for any x PM
and use parallel transport with respect to an arbitrary connection on Q to extend
this to a section of Ei0 . In particular, in this case E admits a nowhere-vanishing
section. Since these particular sections are parallel with respect to every connection
on Q, one often calls them invariant sections.
Thus, we have seen that the existence of G-structures on P implies the existence of
nowhere-vanishing sections on certain associated vector bundles. The only criterion
for the existence of such distinguished sections is how the H-representation decom-
poses into irreducible G-representations.

It will be important for us to also investigate the converse direction here. A nowhere-
vanishing section of an irreducible associated vector bundle of rank k defines a split-
ting of E into a rank-pk´ 1q and a rank-1 subbundle. Hence, one could expect that
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under certain circumstances these subbundles are associated vector bundles them-
selves. But if they are, the structure group has to be reduced since E was irreducible
as associated to P, hence implying the existence of a G-structure on P. The result
is stated in

Proposition 2.1.8: Let pP, π,M,Hq be a principal bundle over M , and consider
a K-vector bundle E “ P ˆpH,ρq V associated to P. Let there be an element τ0 P V

having a non-trivial stabilizer G “ th P H | ρphqpτ0q “ τ0u.
In this case, E admits a nowhere-vanishing section τ P ΓpEq such that there is a
covering tpUi, siquiPΛ of M by local sections of P satisfying

τ|x “ rsipxq, τ0s @x P Ui, i P Λ, (2.1.7)

if and only if there exists a G-structure on P.

Proof. Assume we are given a section τ P ΓpEq and a covering tpUi, siquiPΛ with the
described property. First, consider Ui X Uj — Uij ‰ H. On Uij we have

τ|x “ rsipxq, τ0s “ rsjpxq, τ0s @x P Uij . (2.1.8)

There exists a smooth transition map hij : Uij Ñ H, x ÞÑ hijpxq such that

sipxq “ Rhijpxq sjpxq @x P Uij . (2.1.9)

Thus,
τ|x “ rsipxq, τ0s “ rRhijpxq sjpxq, τ0s

“ rsjpxq, ρphijpxqqpτ0qs

“ rsjpxq, τ0s.

(2.1.10)

Since the map v ÞÑ rp, vs for fixed p P P is a diffeomorphism (appendix A.1), hij
takes values in G exclusively.
Now define Q “ tp P P | τ|πppq “ rp, τ0su. We will show that this set defines the
required G-structure.
For i P Λ consider the maps

φi : Q|Ui Ñ Ui ˆG, φipRg sipxqq– px, gq. (2.1.11)

From the above arguments we know that transitions between these maps are given
by smooth G-cocycles. Thus, we endow Q with the differentiable structure induced
by the local trivializations which are given by the φi. We see that this is in fact a
principal G-bundle.
The φi directly extend to local trivializations of P by φipRh sipxqq – px, hq. These
are compatible with the differentiable structure of P in the sense that this bundle
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atlas of P restricts to a bundle atlas of Q. We, therefore, identify Q as a principal
G-subbundle of P and have thus constructed a G-structure pQ, π,M,Gq on P.
If, on the other hand, there is a G-structure Q Ă P on P, consider a covering
tpUi, siquiPΛ of M with local sections of Q. As in the preceding corollary, define
τ|x “ rq, τ0s @x PM . We saw in the proof of that corollary that this defines a global
section of E. Moreover, τ|x “ rsipxq, τ0s @ i P Λ, x P Ui.

This proposition shows how the choice of nowhere-vanishing sections with fixed
local representations defines G-structures on principal bundles and vice versa. Note
that often these sections sections arise in tuples. This is because generically there
will be several representations of H whose restrictions to G Ă H contain a trivial
representation. Each of these will then give rise to a nowhere-vanishing section of
the corresponding associated vector bundle. However, for the sake of simplicity we
chose to treat only one of these sections in the above considerations. Let us finally
give these distinguished sections a name for further reference.

Definition 2.1.9: Be pP, π,M,Hq a principal fiber bundle overM and pQ, π,M,Gq

a G-structure on P which is defined by a section τ P ΓpEq in the fashion of propo-
sition 2.1.8. Then τ is called a defining section for Q.

Reductions of pP, π,M,Hq to principal H-bundles can equivalently be defined via
global sections of the associated bundle P ˆp`,Hq H{G [18], where the left-action
` : H ˆH Ñ H, `ph1qph2q “ h1h2 is the natural left-action of H on itself. However,
we considered it more valuable to investigate G-structures by means of defining
sections in the above way. This view is more directly related with calculations in
later chapters, where we benefit from using the components of the defining sections
with respect to local frames on M .

To sum up, the existence of G-structures of a principal H-bundle, where G is the
stabilizer of some element in a representation ρ of H on a vector space, is equivalent
to the existence of a section of E “ P ˆpH,ρq V having property (2.1.7).
Returning to the example of a Riemannian metric, OpDq Ă GLpD,Rq is a closed
subgroup defined as the stabilizer of a certain element of

Λ2
pRDq˚. A Riemannian

metric on M does, of course, satisfy the assumptions of proposition 2.1.8. This is
because everywhere there exists a local orthonormal frame for any given g. The
subbundle Q, as constructed in the proof of this proposition, is just the subbundle
of orthonormal frames as contained in F pTMq. Thus, our formal approach applied
to the motivating example of this section reproduces what we used as a guiding
principle.
In the following we will mostly deal with G-structures on M , instead of on a more
general principal bundle P.
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2.2 Intrinsic Torsion and Classification of G-Structures

We now turn to the study of connections on principal bundles carrying a G-structure
as defined in the previous section. The central issue here is that, generically, connec-
tions on P do not restrict to connections on the principal bundle of the G-structure
Q. In particular, when working with G-structures on M it is not necessarily true
that the Levi-Civita connection of a Riemannian metric compatible with the G-
structure has holonomy contained in G. That is, if Q is given by defining sections,
in general the Levi-Civita connection will not be compatible with the G-structure
in the sense that it fails to preserves the defining sections.
For example, the five-sphere S5 with its standard metric carries an SUp2q-structure,
but has a bigger holonomy group. The former will be shown in section 3.4 using
S5 “ SUp3q{SUp2q.

Being given a connection A on Q, there always exists an extension of A to a con-
nection AP on P (cf. appendix A.2, [18]). The restriction to Q then yields back
A P CpQq. Thus, there is an embedding

CpQq ãÑ CpPq. (2.2.1)

This yields

Proposition 2.2.1: Consider a principal H-bundle pP, π,M,Hq admitting a G-
structure pQ, π,M,Gq. The following two assertions hold true:

(1) Every connection on Q can be extended to a connection on P.
(2) The restriction of a connection 1-form on P to Q is a connection 1-form on
Q if and only if there is a covering tpUi, siquiPΛ of M with local sections of Q
such that s˚iA is g-valued for every i P Λ.

Proof. We are left to show the second assertion. Consider a covering tpUi, siquiPΛ of
M with local sections of Q, and let A P CpPq be a connection on P. We compute

s˚jA “ pRgji ˝ siq
˚A “ AdHpg

´1
ji q ˝ s

˚
iA` gji

˚µG, (2.2.2)

where gji is the transition map from si to sj . Hence, the collection ps˚iAqiPΛ has
the correct transformation behavior of a local representation of a connection on Q.
However, as A is a generic connection on P, which has structure group H, s˚iA
will in general be h-valued, rather than g-valued. Therefore, the collection ps˚iAqiPΛ
represents a connection on Q if and only if s˚iA takes values in g for all i P Λ.

As simple illustration of the second statement is that while every metric connection
on a Riemannian manifold pM, gq is a connection on F pTMq, not every connection
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on F pTMq preserves g.
While this already states a relation between connections on P and Q, for certain Lie
groups we can construct connections on Q from general connections on P. This will
be of importance in the following sections when we consider metric G-structures on
M . These we define to be G-structures onM where G Ă SOpDq Ă GLpD,Rq. That
is, Q is contained in the bundle of orthonormal frames that is defined by a certain
Riemannian metric on an orientable M .

Proposition 2.2.2: Let pP, π,M,Hq a principal H-bundle admitting a G-structure
pQ, π,M,Gq where the splitting h “ g ‘ m is such that m is invariant under the
action of G via AdH . Denote by prg and prm the projections of h onto g and m,
respectively, and let A P CpPq be an arbitrary connection on P.
Then

pQpAq– prg ˝A|Q P CpQq (2.2.3)

is a connection on Q. Furthermore, there is a horizontal m-valued 1-form of type
AdH on Q given by

TQpAq– prm ˝A|Q “ A|Q ´ pQpAq P Ω1
horpQ,mqpG,AdHq. (2.2.4)

Proof. First, we show that pQpAq is a connection 1-form on Q.
Be ξ P g. The fundamental vector field on Q corresponding to ξ is given by

ϕQpξq|q “
d
dt |0

RQ
expptξq q “

d
dt |0

RP
expptξq q “ ϕPpξq|Q @ q P Q. (2.2.5)

The second equality holds because Q is a principal subbundle of P. Hence, we have

ϕQpξq “ ϕPpξq|Q @ ξ P g. (2.2.6)

Therefore,

pQpAqq ˝ ϕ
Q pξq “ prg ˝Aq ˝ ϕ

P pξq “ prgpξq “ ξ @ ξ P g, q P Q, (2.2.7)

and pQpAq ˝ ϕ
Q “ idg is satisfied.

Now consider
Rg
˚
`

pQpAq
˘

“ prg ˝A ˝Rg˚

“ prg ˝Rg
˚A

“ prg ˝AdHpg
´1q ˝A

“ AdHpg
´1q ˝ prg ˝A

“ AdGpg
´1q ˝ pQpAq.

(2.2.8)

Here we used that, as representations of G on g, the restriction of the adjoint repre-
sentation of H to G coincides with the adjoint representation of G. That is, we have
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AdH |G “ AdG as representations of G on g. This is because AdHpgq “ αHpgq˚|e,
where the map αHphqpaq “ h ah´1 is the inner automorphism of H. The group mul-
tiplication on G and the restriction of that on H to elements of G coincide, whence
AdHpgq|g “ AdGpgq @ g P G. Also, the fourth equality does only hold true for the
splitting h “ g‘m being invariant under the restriction of AdH to G. For m being
invariant under the action of G via AdH , the coincidence of AdHpgq and AdGpgq on
g then yields the invariance of the splitting of h and thereby the fifth equality.
Thus, pQpAq is a connection form on Q, i. e. pQpAq P CpQq.
Let us turn to the proof of equation (2.2.4). Since pQpAq “ A|Q ´ pA|Q ´ pQpAqq

takes values in g, the part of A|Q mapping to m is precisely given by A|Q ´ pQpAq,
which hence is an m-valued 1-form on Q.
Also, as shown in the proof of (2.2.3), A|Q and pQpAq coincide on the fundamental
vector fields on Q and hence on the complete vertical tangent bundle of Q. Conse-
quently, A|Q ´ pQpAq is horizontal.
We are left to check that this form is of type AdH , which is only well-defined on
m-valued forms on Q if m is invariant under AdH restricted to G. From computing

R˚g pA|Rgq ´ pQpAq|Rgqq “ Rg
˚pA|Rgqq ´Rg

˚
`

pQpAq|Rgq
˘

“ AdHpg
´1q ˝A|q ´ prg ˝AdHpg

´1q ˝A|q

“ AdHpg
´1q ˝ pA|q ´ prg ˝A|qq

(2.2.9)

we see that A|Q´ pQpAq does indeed have this property, thus completing the proof.
Note that in the third equality we have again made use of the invariance of the
splitting of h.

The first assertion of the proposition has already been proven for example in [18].
For G being a connected Lie group, the invariance property is satisfied if and only
if the splitting h “ g ‘m is reductive, that is, rg,msH Ă m. This is true since for
any Lie group homomorphism φ : G Ñ H one can show that φ ˝ expG “ expH ˝φ˚
(cf. [18]), and since every element of the identity component of a Lie group can
be expressed as a product of elements of any arbitrary open neighborhood of the
identity.
The m-valued 1-form TQpAq P Ω1

horpQ,mqpG,AdHq has a remarkable property.

Lemma 2.2.3: Consider a principal H-bundle pP, π,M,Hq admitting a G-structure
Q, where the splitting h “ g‘m is invariant under the action of AdH restricted to
G. For any A P CpPq we have

prm ˝ pA|Q ´A
1q “ TQpAq @A

1 P CpQq. (2.2.10)

Thus, for fixed A P CpPq, T pAq defines a map

T pAq : GP Ñ Ω1
horpQ,mqpG,AdHq, Q ÞÑ TQpAq (2.2.11)
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2 G-Structures and Intrinsic Torsion

from the space GP of G-structures on P to Ω1
horpQ,mqpG,AdHq.

Proof. CpQq is an affine vector space over Ω1
horpQ, gqpG,AdGq. Recall from the previ-

ous proposition that pQpAq P CpQq. From this we infer

pQpAq ´A
1 P Ω1

horpQ, gqpG,AdGq. (2.2.12)

Thus,

prm ˝ pA|Q ´A
1q “ prm ˝

`

pA|Q ´ pQpAqq ` ppQpAq ´A
1q

looooooomooooooon

g-valued

˘

“ prm ˝ pA|Q ´ pQpAqq

“ TQpAq,

(2.2.13)

and the proof is complete.

Because TQpAq depends on the choice of a connection on P and on the G-structure
on P only, we can for a fixed A0 P CpPq use TQpA0q in order to classify G-structures
on P.

Definition 2.2.4: On a principal H-bundle pP, π,M,Hq admitting a G-structure
Q, where the splitting h “ g‘m is invariant under the action of AdH restricted to
G, fix a connection A0 P CpPq.
Then TQpA0q P Ω1

horpQ,mqpG,AdHq is called the intrinsic torsion of Q with re-
spect to A0.

Later on in this thesis, we will mostly focus on metric G-structures on orientable
Riemannian manifolds pM, gq. On the bundle of orthonormal frames SOpM, gq of
such spaces we are given a distinguished connection, namely the Levi-Civita con-
nection of g. In this case, we choose A0 to be the Levi-Civita connection and refer
to TQpA0q as the intrinsic torsion of the G-structure on M . This way we recover
the notion of intrinsic torsion used in [20], which will be sufficient for our purposes.
In fact, there is a more general way to define intrinsic torsion on arbitrary frame
bundles used e. g. in [19, 21]. In [19], the link to our elaboration is given precisely
by measuring intrinsic torsion of metric G-structures with respect to the Levi-Civita
connection of the given metric.
In particular, the torsion TQpA0q measures how much A0 fails to be a connection on
Q, i. e. how much it fails to preserve the (defining sections of the) G-structure.

Definition 2.2.5: If TQpA0q “ 0, we say that the G-structure Q is integrable with
respect to A0. If TQpA

gq “ 0 in the case of metric G-structures on M , where we
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2.2 Intrinsic Torsion and Classification of G-Structures

choose A0 “ Ag to be the Levi-Civita connection of the metric compatible with Q,
we just call Q integrable.

For the splitting h “ g ‘ m being invariant under the G-representation AdH , we
have (again in the notation of [18])

AdpPq– P ˆpH,AdHq h

“ P ˆpH,AdHq pg‘mq

“ AdpQq ‘QˆpG,AdHq m (2.2.14)

“ AdpQq ‘ V.

Here we used lemma 2.1.4 and again the fact that AdH restricted to G coincides
with AdG as a representation of G on g.
In [18] it is shown that on every principal H-bundle P there exists a bijective map
Ψ : Ωk

horpP, V qpG,ρq Ñ ΩkpM,P ˆpG,ρq V q for any k P N0 (see appendix A.1 for more
details). Thus, we see from (2.2.4) that ΨpTQpA0qq P Ω1pM,Vq “ ΓpT ˚M b Vq.
If, in particular, we are dealing with G-structures on F pTMq, rather than on some
general principal bundle, T ˚M is an associated bundle of Q as well. Hence, so is
T ˚M b V, but it may be reducible as associated to Q. In general, we thus have

T ˚M bAdpPq “ T ˚M b pAdpQq ‘QˆpG,AdHq mq

“
`

T ˚M bAdpQq
˘

‘
`

QˆpG,ρ´T bAdHq pR
D bmq

˘

“
`

T ˚M bAdpQq
˘

‘

N
à

i“1
Wi.

(2.2.15)

We take ρ to denote the standard representation of GLpD,Rq on R, and TM is
associated to F pTMq via this representation. The cotangent bundle is dual to T ˚M ,
whence it is associated to F pTMq via the inverse transposed representation ρ´T .
The method for classifying G-structures on M is then to state in which of the
associated vector bundles Wi, i P t1, . . . , Nu the intrinsic torsion ΨpTQpA0qq of the
G-structure has non-trivial components.
This idea has been developed in [5], and it has been investigated for metric G-
structures on Riemannian manifolds for example in [20] and as well in [22] and [14],
where in the latter two references applications to flux compactifications are pointed
out.
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Chapter 3

Special Geometric Structures

3.1 SU(3)-Structures in D = 6

In the last chapter we explored the general framework behind G-structures. Here we
specialize to SUp3q-structures and SUp2q-structures on 6- and 5-dimensional mani-
folds, respectively, for we will use these in the constructions of chapters 5 and 6.

Let us begin our introduction of SUp3q-structures by first considering a little more
general structures on even-dimensional manifolds. These will provide us with back-
ground useful in later considerations and computations. The notions used here can
be found in e. g. [17, 23].
The most important objects in this section will be the complexified tangent and
cotangent bundle

TMC – TM b C and T ˚MC – T ˚M b C. (3.1.1)

If tei | i “ 1, . . . , Du is a local frame of TM with dual coframe β, we locally have

TUM
C “ spanCtei | i “ 1, . . . , Du, T ˚UM

C “ spanCtβi | i “ 1, . . . , Du. (3.1.2)

On every complex vector space of even dimension there exist complex structures,
i. e. automorphism of the vector space that square to minus the identity. Conse-
quently, if D is even, which shall be assumed for the remainder of this section, we
could construct local complex structures from local frames as given above. As it al-
ways is with non-trivial vector bundles, there may, however, exist no global versions
of these.

Definition 3.1.1: A manifold endowed with a section J P ΓpEndpTMqq such that
J2 “ ´I is called an almost complex manifold. J is called an almost complex
structure onM . It is the defining section of a GLpn,Cq-structure onM for D “ 2n
in the language of section 2.1.

Such an almost complex structure can be extended linearly to TMC. Since it squares
to the identity, J|x has eigenvalues ˘i.
By putting

pJ˚pµqqpXq– µpJpXqq @µ P Ω1pMq, X P ΓpTMq (3.1.3)

we obtain J˚ P ΓpEndpT ˚Mqq. Its extension to T ˚MC also squares to the identity
and therefore has eigenvalues ˘i.

24



3.1 SU(3)-Structures in D = 6

This induces a splitting

T ˚MC “ EigJ˚piq ‘ EigJ˚p´iq— Λ1,0 T ˚M ‘ Λ0,1 T ˚M. (3.1.4)

One may then define Λp,0 T ˚M and Λ0,p T ˚M as the p-th exterior power of Λ1,0 T ˚M

and Λ0,1 T ˚M , respectively. Furthermore, we put

Λp,q T ˚M –
`

Λp,0 T ˚M
˘

^
`

Λ0,q T ˚M
˘

, (3.1.5)

thus introducing the decomposition

ΛkT ˚MC “
à

p`q“k

Λp,q T ˚M @ k “ 0, . . . , D. (3.1.6)

This suggests the notation Ωp,qpMq “ ΓpΛp,q T ˚Mq.
However, the existence of an almost complex structure is a weaker condition than
the existence of a holomorphic atlas of M , i. e. a proper complex structure. This is
taken account for in the following definition which includes statements to be found
e.g. in [23].

Definition 3.1.2: An almost complex manifold pM,Jq is called a complex man-
ifold if either one of the following equivalent statements holds true:

(1) J is integrable. That is, its Nijenhuis tensor of J vanishes identically, i. e. for
all X,Y P ΓpTMq

NJpX,Y q– rJpXq, JpY qs´JprJpXq, Y sq´JprX,JpY qsq´rX,Y s “ 0. (3.1.7)

(2) The exterior differential satisfies

dΩ1,0pMq Ă Ω2,0pMq ‘ Ω1,1pMq. (3.1.8)

(3) The exterior differential satisfies

dΩ0,1pMq Ă Ω1,1pMq ‘ Ω0,2pMq. (3.1.9)

(4) The exterior differential satisfies

dΩp,qpMq Ă Ωp`1,qpMq ‘ Ωp,q`1pMq. (3.1.10)

(5) There exists an atlas for M with holomorphic transition maps.

In a gravitational theory, of course, an additional field is present, namely a metric on
M . Between this and an almost complex structure there can be a fruitful interplay
if the fields are compatible in the following way:
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3 Special Geometric Structures

Definition 3.1.3: A Riemannian manifold pM, gq endowed with an almost complex
structure J is said to be an almost Hermitian manifold if g is invariant under
J , i. e. if

g
`

Jp¨q, Jp¨q
˘

“ gp¨, ¨q. (3.1.11)

A tuple pg, Jq compatible in this sense defines a Upnq-structure on M [17]. An
almost Hermitian manifold is called aHermitian manifold if its underlying almost
complex structure is complex.

For computations it will be useful to find local bases of the eigenbundles of J˚. Be
pM, g, Jq an almost Hermitian manifold. For a local orthonormal coframe β on MD

with D “ 2n define

µj – β2j´1, σj – β2j , j “ 1, . . . , n. (3.1.12)

We choose the coframe in a way such that

J˚pµjq “ ´ σj , J˚pσjq “ µj , or

Jpe2j´1q “ e2j , Jpe2jq “ ´e2j´1.
(3.1.13)

Note that for the so-called Kähler form we have

ω – gpJp¨q, ¨q “
n
ÿ

i“1
β2j´1 ^ β2j “

n
ÿ

i“1
µj ^ σj . (3.1.14)

The forms tµj ˘ i σj | j “ 1, . . . , nu provide a local basis of T ˚MC satisfying

J˚pµj ˘ i σjq “ ˘i pµj ˘ σjq. (3.1.15)

Thus, this is a basis adapted to the splitting of T ˚MC into the eigenspaces of J˚.
At some points we will use

θj – µj ` i σj , θj̄ – µj ´ i σj “ sθj , (3.1.16)

which satisfy
Jpθjq “ i θj and Jpθj̄q “ ´i θj̄ . (3.1.17)

With these definitions,

Λ1,0 “ spanCtθ
j | j “ 1, . . . , nu and Λ0,1 “ spanCtθ

j̄ | j “ 1, . . . , nu. (3.1.18)

We now come to the definition of an SUp3q-structure in D “ 6. As explained in
section 2.1, a G-structure onM can be characterized in terms of its defining sections.
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3.1 SU(3)-Structures in D = 6

Definition 3.1.4: An SUp3q-structure on a 6-dimensional manifold M is
defined by a quadruple pg, J, ω,Ωq, where pM, g, Jq is an almost Hermitian manifold
with Kähler form ω P Ω1,1pMq, and Ω P Ω3,0pMq is a nowhere-vanishing p3, 0q-form
on M . These defining sections are subject to the algebraic relations

ωpX,Y q “ gpJpXq, Y q @X,Y P ΓpTMq

ω ^ Ω “ 0, (3.1.19)

Ω^ Ω̄ “ ´
4i
3 ω ^ ω ^ ω.

More precisely, the SUp3q-structure is completely determined by either of the triples
pg, J,Ωq, pJ, ω,Ωq, or pg, ω,Ωq. This is because (3.1.14) determines one element of
pg, J, ωq from the remaining two. The standard form of ω is given in (3.1.14) and
that of Ω reads

Ω “ pβ1 ` i β2q ^ pβ3 ` i β4q ^ pβ5 ` i β6q

“ pµ1 ` i σ1q ^ pµ2 ` i σ2q ^ pµ3 ` i σ3q.
(3.1.20)

We will also make use of the real and imaginary parts of

Ω “ Ω` ` iΩ´, Ω˘ P Ω3,0pMq ‘ Ω0,3pMq. (3.1.21)

separately. The standard components of Ω` and Ω´, thus, read

Ω` “ β135 ´ β146 ´ β236 ´ β245,

Ω´ “ β136 ` β145 ` β235 ´ β246,
(3.1.22)

where we adopted the shorthand notation βab “ βa ^ βb.

It turns out that there are several different types of SUp3q-structures with different
geometric properties. As we indicated in section 2.2, G-structures can be classified
by their intrinsic torsion, and this governs most of their geometric features. In that
section we introduced the notion of intrinsic torsion of a G-structure by means of a
reference connection of the ambient principal bundle. We then pointed out that this
measures how the reference connection fails to preserve the defining sections of the
G-structure. From this we might expect the torsion classes to be encoded in certain
derivatives of these sections. In fact, in the case of SUp3q-structures on 6-manifolds,
the torsion classes can be read off from [14,20]

dω “ 3
2 Im

´

`

W`
1 ´ iW

´
1
˘

Ω
¯

`W3 `W4 ^ ω, (3.1.23)

dΩ “
`

W`
1 ` iW

´
1
˘

ω ^ ω `
`

W`
2 ` iW

´
2
˘

^ ω ` Ω^W5, (3.1.24)

where we use a form of W5 slightly differing from that in e. g. [14]. W˘
1 are real

functions, W4 and W5 are real 1-forms, W˘
2 are the real and imaginary part of a
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3 Special Geometric Structures

p1, 1q-form, respectively, and W3 is the real part of a p2, 1q-form. In addition, both
W2 and W3 are primitive forms, meaning that [14]

ω  W2 “ 0 and ω  W3 “ 0. (3.1.25)

The  is the interior multiplication, or contraction, of two forms. It is defined with
respect to a Riemannian metric, and we use the conventions of [22]. That is, it

µ σ – ˚pµ^ ˚σq, (3.1.26)

such that for example β12  β1234 “ β34. Note that conformal rescalings leave the
combination 3W4 ` 2W5 invariant, and that the structure is complex if and only if
W˘

1 “W˘
2 “ 0.

With this we can define several special types of SUp3q-structures.

Definition 3.1.5: Let pg, J, ω,Ωq be an SUp3q-structure on a 6-dimensional mani-
fold M .

(1) pg, J, ω,Ωq is integrable, or Calabi-Yau, if

dω “ 0, dΩ “ 0 ô W1 “W2 “W3 “W4 “W5 “ 0. (3.1.27)

(2) One speaks of a half-flat [24] SUp3q-structure pg, J, ω,Ωq if

dω ^ ω “ 0, dΩ` “ 0 ô W`
1 “W`

2 “W4 “W5 “ 0. (3.1.28)

(3) pg, J, ω,Ωq is called nearly Kähler if [25,26]

dω “ ´3λΩ`, dΩ´ “ 2λω ^ ω (3.1.29)

for some λ P R, which is equivalent to

W´
1 “ 2λ and W`

1 “W2 “W3 “W4 “W5 “ 0. (3.1.30)

We add an additional note on a special type of Up3q-structures. On any almost
Hermitian manifold pM, g, Jq there exists a unique connection preserving this struc-
ture and having totally antisymmetric torsion. This connection is called the Bismut
connection [27,28].

Definition 3.1.6: Kähler-torsion 6-manifolds are characterized by the torsion of
the Bismut connection being given by

T “ Jdω, (3.1.31)

and this being the real part of a p2, 1q-form.
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3.2 SU(2)-Structures in D = 5

In this situation, the Bismut connection is then sometimes called the canonical con-
nection of the Kähler-torsion structure, or the Kähler-torsion connection. From [28]
one can see that Kähler-torsion manifolds are complex, i. e. they are a subclass of

W˘
1 “W˘

2 “ 0. (3.1.32)

In general, their structure group is Up3q rather than SUp3q, in contrast to the pre-
ceding types of manifolds. Nevertheless, as an SUp3q-structure is defined by the
data pg, J,Ωq, its principal bundle is contained in an ambient Up3q-structure defined
by pg, Jq. We may then ask, whether this Up3q-structure is Kähler-torsion, and if
so, call the SUp3q-structure Kähler-torsion as well.
We have thus seen, that every SUp3q-structure is contained in a Up3q-structure. The
converse, however, need not be true, as for instance if M is non-orientable. Yet, a
Up3q-structure might be reducible to an SUp3q-structure, and it certainly will be
if it carries a connection with holonomy SUp3q. In this case, we could reduce the
Up3q-principal bundle to the holonomy bundle of that connection.
In particular, one may ask whether the Bismut connection has holonomy group
SUp3q. For a given SUp3q-structure, we may even consider its ambient Up3q-
structure and investigate whether the Bismut connection restricts to a connection on
the SUp3q principal bundle. This is non-trivial as elaborated on in section 2.2 and
turns out to hold true if the SUp3q-structure is Kähler-torsion in the aforementioned
sense and additionally satisfies

2W4 `W5 “ 0. (3.1.33)

This result has been obtained for example in [29]. SUp3q-structures which are
Kähler-torsion in the above sense and additionally satisfy 2W4 `W5 “ 0 are called
Calabi-Yau-torsion. These are the Kähler-torsion SUp3q-structures for which the
Bismut connection of the ambient Up3q-structure is compatible with the SUp3q-
structure.
In chapter 5, we construct and examine Kähler-torsion, nearly-Kähler, and half-flat
SUp3q-structures on 6-manifolds from suited SUp2q-structures in D “ 5.

3.2 SU(2)-Structures in D = 5

We introduce SUp2q-structures on 5-manifolds and examine special examples in this
and the following section.
SUp2q-structures on 5-manifolds can be characterized in terms of defining sections
as introduced in section 2.1, similar to the SUp3q-structures in 6 dimensions. For
SUp2q-structures on 5-manifolds, this has been worked out in [30]. There the fol-
lowing result has been proven:
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3 Special Geometric Structures

Proposition 3.2.1: SUp2q-structures on 5-dimensional manifolds M5 are in one-
to-one correspondence to quadruples pη, ω1, ω2, ω3q, which consist of η P Ω1pMq and
ωi P Ω2pMq @ i “ 1, 2, 3 satisfying

ωi ^ ωj “ 2 δij Q for Q “ 1
2 ω

3 ^ ω3 P Ω4pMq, (3.2.1)

η ^Q ‰ 0 and (3.2.2)

ιXω
3 “ ´ιY ω

2 ñ ω1pX,Y q ě 0. (3.2.3)

Note that our choice of order and signs of the forms differ from that in [30]but
the formulas are adapted accordingly. The main reason for our choice will become
obvious from the next proposition.
Equivalently, the defining sections single out frames of TM that are elements of a
principal SUp2q-subbundle of F pTMq. As presented in proposition 2.1.8, the SUp2q-
structure consists of precisely those frames, in which the defining sections pη, ωiq
have certain standard components. These components have first been written down
in [30], and with a slight relabeling and change of the sign of β5 the result is

Proposition 3.2.2: SUp2q-structures on 5-dimensional manifolds M5 are in one-
to-one correspondence to quadruples pη, ω1, ω2, ω3q, consisting of forms η P Ω1pMq

and ωi P Ω2pMq, i “ 1, 2, 3 such that around every x PM there is some open neigh-
borhood U Ă M and a local frame e P ΓU pF pTMqq with dual coframe β, expressed
in which pη, ω1, ω2, ω3q take the standard form

η “ ´ β5,

ω1 “ β1 ^ β4 ` β2 ^ β3,

ω2 “ ´ β1 ^ β3 ` β2 ^ β4,

ω3 “ β1 ^ β2 ` β3 ^ β4.

(3.2.4)

With this convention for the defining forms and making use of the ’t Hooft tensor

ηabc – εabc4 ` δ
a
b δc4 ´ δ

a
c δb4, a, b, c “ 1, . . . , 4 (3.2.5)

(not to be confused with the 1-form η) as in [31], we can unify the standard forms
of the ωi as

ωα “
1
2 η

α
bc β

b ^ βc, α “ 1, 2, 3. (3.2.6)

Note that since SUp2q can be embedded into SOp5q, there also is a Riemannian
metric g onM which takes its standard form in the bases that constitute the SUp2q-
structure.
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3.3 Sasakian Structures

Similar to the case of SUp3q-structures in D “ 6, there are special types of SUp2q-
structures in D “ 5. These are singled out by certain conditions on the differentials
of the defining forms. We define them as in [24], but with signs adapted.

Definition 3.2.3: Consider an SUp2q-structure on a 5-dimensional manifold M5

defined by pη, ω1, ω2, ω3q .

(1) The SUp2q-structure is said to be hypo if

dω3 “ 0, dpη ^ ω1q “ 0, and dpη ^ ω2q “ 0. (3.2.7)

(2) It is called nearly hypo if

dω1 “ ´3 η ^ ω2, and dpη ^ ω3q “ 2ω1 ^ ω1. (3.2.8)

(3) The SUp2q-structure is double hypo if it is hypo and nearly hypo.
(4) An SUp2q-structure is defined to be Sasaki-Einstein if

dη “ 2ω3, dω1 “ ´3 η ^ ω2, and dω2 “ 3 η ^ ω1. (3.2.9)

Clearly Sasaki-Einstein SUp2q-structures are double hypo, but the converse does not
necessarily hold true.

After this exposition of SUp3q- and SUp2q-structures in D “ 6 and D “ 5, re-
spectively, we go more into the details of Sasakian and Sasaki-Einstein manifolds.
Study of the former structures will provide us with valuable additional knowledge
about the rich structure of these manifolds. The richer a structure there is on a
manifold, the more objects there are whose effects can be interwoven in explicit
constructions. However, we must not be too restrictive in order not to rule out too
many phenomenologically viable classes of manifolds.

3.3 Sasakian Structures

First, we collect the characterizations of Sasakian structures used in e. g. [17] or [32].
We take from [17] the following two definitions and the subsequent theorem, adapting
them to our conventions for differential forms, which coincide with the ones of [32].

Definition 3.3.1: We define the following geometric structures on a manifold MD

of dimension D “ 2n` 1:

(1) First, a contact structure is defined by a 1-form η P Ω1pMq having the
property that

`

η ^ pdηqn
˘

|x
‰ 0 @x PM. (3.3.1)
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3 Special Geometric Structures

(2) An almost contact structure on M is given by a triple pη, ξ,Φq, where
η P Ω1pMq, ξ P ΓpTMq and Φ P EndpTMq, satisfying the relations

ηpξq “ 1 and Φ2 “ ´I` η b ξ. (3.3.2)

(3) We define ametric almost contact structure onM to be a tuple pg, η, ξ,Φq,
where pη, ξ,Φq is an almost contact structure onM and pM, gq is a Riemannian
manifold compatible with the almost contact structure in the sense that

gpΦpXq,ΦpY qq “ gpX,Y q ´ ηpXq ηpY q @X,Y P ΓpTMq. (3.3.3)

(4) A metric almost contact structure is called normal if the lift of Φ to the metric
cone over M induces an integrable almost complex structure. This turns out
to be equivalent to

Lξ Φ “ 0. (3.3.4)

(5) A metric contact structure on M is a metric almost contact structure
pg, η, ξ,Φq on M such that η is a contact form with

dη “ 2 g
`

Φp¨q, ¨
˘

. (3.3.5)

(6) A metric contact structure is defined to be K-contact if its Reeb vector field
is Killing.

(7) Finally, a normal metric contact structure is called a Sasakian structure.

Note that we use the conventions of [32] regarding the exterior differential and wedge
product, thus requiring the 2 in (3.3.5).
In particular, we see from this definition that on a metric almost contact manifold ξ
always is of unit length. Thus, around every point x PM there is a local orthonormal
frame such that

ξ “ ´eD, η “ ´βD, and Φ “
n
ÿ

j“1
β2j´1 b e2j ´ β

2j b e2j´1. (3.3.6)

Also, ξ Kg kerpηq.
Other characterizations of Sasakian manifolds that may be helpful are the follow-
ing [17].

Proposition 3.3.2: Let pM, gq be a Riemannian manifold and ∇g its Levi-Civita
connection. Then the following properties are equivalent:

(1) There exists a Killing vector field ξ of unit length on M such that the tensor
field Φ P EndpTMq, ΦpXq– ∇gXξ satisfies

p∇gXΦqpY q “ gpξ, Y qX ´ gpX,Y q ξ @X,Y P ΓpTMq. (3.3.7)
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(2) There exists a Killing vector field ξ of unit length on M such that the curvature
2-form R P Ω2pM,EndpTMqq of ∇g satisfies

RpX, ξqpY q “ gpξ, Y qX ´ gpX,Y q ξ @X,Y P ΓpTMq. (3.3.8)

(3) The metric cone pC pMq, ḡq “ pMˆR`,dr2 ` r2 gq with ω – r2

2 dη ` r dr ^ η
is Kähler.

(4) pM, gq is Sasakian.

Depending on the situation, we can choose one of the above equivalent characteriza-
tions in order to check whether or not a manifold is Sasakian. But we can also prove
another characterization of Sasakian structures, which is similar to the known above
ones, but might be interesting nevertheless. This will be of help when searching for
the connections with reduced holonomy on Sasakian manifolds. To make the proof
of this characterization easier to read, we state two technical lemmas first:

Lemma 3.3.3: Be pM, g, ξ, η,Φq a manifold endowed with a metric contact struc-
ture, and be pCφpMq, ḡq – pMˆI, dr2 ` φprq2 gq its φ-cone. I Ă R is some (open)
interval, on which the smooth function φ : I Ñ R`, r ÞÑ φprq is defined.
In the fashion of [32], denote by Ψ|pr,xq “ φprq Br|pr,xq the adaption of the Euler vector
field to CφpMq and by Ψ1 its dual 1-form. Define

J “ Φ‘ pΨ1 b ξ ´ η bΨq “ Φ‘
`

dr b 1
φ
ξ ´ φ η b dr

˘

. (3.3.9)

Then, pCφ pMq, ḡ, Jq is an almost Hermitian manifold and its Kähler form is given
by [32]

ω “
1
2 φ

2 dη ` φ dr ^ η. (3.3.10)

Proof. It is immediate that J2 “ ´I. Be X,Y P Γpkerpηqq. We compute

ḡpJpXq, JpY qq “ φ2 gpΦpXq,ΦpY qq “ φ2 gpX,Y q “ ḡpX,Y q,

ḡpJpξq, JpXqq “ 0 “ ḡpξ,Xq,

ḡpJpΨq, JpXqq “ φ2 gpξ,ΦpXqq “ 0 “ ḡpΨ, Xq,

ḡpJpξq, JpΨqq “ 0 “ ḡpξ,Ψq,

ḡpJpξq, Jpξqq “ φ2 “ ḡpξ, ξq and

ḡpJpΨq, JpΨqq “ φ2 “ ḡpΨ,Ψq.

(3.3.11)

Thus, pCpMq, g, Jq is an almost Hermitian manifold, and its Kähler form is generi-
cally given by

ωp¨, ¨q “ gpJp¨q, ¨q. (3.3.12)
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Be X,Y P Γpkerpηqq. On the φ-cone of M this yields

ωpX,Y q “ ḡpJpXq, Y q “ ḡpΦpXq, Y q “ φ2 gpΦpXq, Y q

“
φ2

2 dη pX,Y q “
ˆ

φ dr ^ η ` φ2

2 dη
˙

pX,Y q,

ωpξ,Xq “ ḡpJpξq, Xq “ ´ḡpΨ, Xq “ 0

“

ˆ

φ dr ^ η ` φ2

2 dη
˙

pξ,Xq,

ωpΨ, Xq “ ḡpξ,Xq “ 0 “
ˆ

φ dr ^ η ` φ2

2 dη
˙

pΨ, Xq,

(3.3.13)

and, finally,

ωpξ,Ψq “ ḡpJpξq,Ψq “ ´φprq2 “
ˆ

φ dr ^ η ` φ2

2 dη
˙

pξ,Ψq. (3.3.14)

Hence, for this choice of a complex structure on Cφ pMq,

ω “ φ dr ^ η ` φ2

2 dη. (3.3.15)

This proves the statement.

From the expression for ω we see that it will be a closed 2-form for φprq “ r.
However, J is not integrable in general, whence the metric cone fails to be Kähler
in the generic case. This illustrates, how Sasakian manifolds are more special than
metric contact manifolds.
The second lemma is generalized from [32] to the φ-cone, as it is stated there for the
metric cone only, and we aim to consider sine-cones, for instance, later on.

Lemma 3.3.4: Let pM, gq be a Riemannian manifold and pCφpMq, ḡq its φ-cone.
Then, for X,Y P ΓpTMq and Ψ as above, we have

∇ḡΨ Ψ “ BrφΨ,

∇ḡX Ψ “ ∇ḡΨX “ BrφX and

∇ḡX Y “ ∇
g
X Y ´ Brφ gpX,Y qΨ.

(3.3.16)

Proof. With rΨ, Xs “ 0 and dφpXq “ Xpφq “ 0 @X P ΓpTMq, we obtain from
Koszul’s formula that

2 ḡp∇ḡX Y,Zq “ 2φ2 gp∇gX Y,Zq “ 2 ḡp∇gX Y,Zq,

2 ḡp∇ḡX Y, Brq “ ´ LBrpφ2 gpX,Y qq “ ´2φ Brφ gpX,Y q.
(3.3.17)
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From this we take
∇ḡX Y “ ∇

g
X Y ´ Brφ gpX,Y qΨ. (3.3.18)

Furthermore, also from Koszul’s fomrula,

2 ḡp∇ḡΨ Ψ,Ψq “ LΨpφ
2q “ 2φ2 Brφ “ 2 Brφ gpΨ,Ψq,

2 ḡp∇ḡΨ Ψ, Xq “ 0,

2 ḡp∇ḡΨX,Ψq “ 0,

2 ḡp∇ḡΨX,Y q “ LΨpφ
2 gpX,Y qq “ 2 Brφ ḡpX,Y q.

(3.3.19)

Hence,
∇ḡΨX “ BrφX “ ∇ḡX Ψ and

∇ḡΨ Ψ “ BrφΨ.
(3.3.20)

This proves the lemma.

We now come to the alternative characterization of Sasakian manifolds.

Proposition 3.3.5: A metric contact structure is Sasakian if and only if it is K-
contact and satisfies

∇gXpdηq “ 2 5gpXq ^ η @X P ΓpTMq. (3.3.21)

Proof. Assume we are given a metric contact structure pg, ξ, η,Φq onM . Recall that
these defining sections satisfy

Φpξq “ 0 and dη pX,Y q “ 2 gpΦpXq, Y q @X,Y P ΓpTMq. (3.3.22)

Let us consider the metric cone pCpMq, ḡq “ pMˆR`, dr2 ` r2 gq over pM, gq. It
is endowed with the Euler vector field Ψ, almost complex structure J , and Kähler
form ω as constructed in lemma 3.3.3. From this it is clear that pC pMq, ḡ, Jq is an
almost Hermitian manifold. Moreover, recall that ω constructed this way is closed
on the metric cone. Thus, we are left to prove the integrability of J .
We may, however, take another route and use the fact that the structure on M

is Sasakian if and only if its cone is Kähler (see proposition 3.3.2). For example
from [17], proposition 3.1.9, we take that an almost Hermitian manifold pM,J, gq

is Kähler if and only if its Kähler 2-form is parallel with respect to the Levi-Civita
connection of g. We, therefore, investigate under which conditions ∇ḡ ω “ 0.
The covariant derivative ∇ḡ ω is defined by means of the Leibniz rule on the tensor
algebra, i. e. for all X,Y, Z P ΓpT CpMqq we have

LXpωpY, Zqq “ p∇ḡX ωqpY, Zq ` ωp∇
ḡ
X Y, Zq ` ωpY,∇

ḡ
X Zq. (3.3.23)
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Consider X,Y, Z P ΓpTMq. Using (3.3.10) and lemma 3.3.5 we compute

p∇ḡBr ωqpY, Zq “ LBr
ˆ

r2

2 dη pY,Zq
˙

´
1
r
ωp∇ḡΨ Y, Zq ´

1
r
ωpY,∇ḡΨ Zq

“ r dη pY,Zq ´ 1
2r dpr2 ηq pY,Zq ´

1
2r dpr2 ηq pY, Zq (3.3.24)

“ 0,

p∇ḡBr ωqpY,Ψq “ LBr
`

r dr ^ η pY,Ψq
˘

´
2
r
ωpY,Ψq

“ ´ 2 r ηpY q ´ 2
r
pr dr ^ η pY,Ψqq (3.3.25)

“ 0,

p∇ḡX ωqpY,Zq “ LX
ˆ

r2

2 dη pY,Zq
˙

´ ωp∇gX Y ´ gpX,Y qΨ, Zq ´ ωpY,∇
g
X Z ´ gpX,ZqΨq

“
r2

2 p∇
g
X dηqpY,Zq ´ gpX,Y qωpΨ, Zq ` gpX,ZqωpY,Ψq (3.3.26)

“
r2

2 p∇
g
X dηqpY,Zq ´ r2 gpX,Y q ηpZq ` r2 gpX,Zq ηpY q

“
r2

2

ˆ

p∇gX dηq ` 2 η ^ 5gpXq
˙

pY,Zq,

p∇ḡX ωqpΨ, Zq “ LXpr dr ^ η pΨ, Zqq

´ ωpX,Zq ´ ωpΨ,∇gX Z ´ gpX,ZqΨq

“ r2LX pηpZqq ´
r2

2 dη pX,Zq ´ r dr ^ η pΨ,∇gX Zq (3.3.27)

“ r2LX pηpZqq ´
r2

2 dη pX,Zq ´ r2 ηp∇gX Zq.

Here we make use of ηpXq “ gpξ,Xq @X P ΓpTMq and

dµ pX,Zq “ XpµpZqq´ZpµpXqq´µprX,Zsq @X,Z P ΓpTMq, µ P Ω1pMq, (3.3.28)

as well as Koszul’s formula. Thereby, we obtain

p∇ḡX ωqpΨ, Zq “ r2
ˆ

LXpgpξ, Zqq ´
1
2

´

XpηpZqq ´ ZpηpXqq ´ ηprX,Zsq (3.3.29)

` LX pgpξ, Zqq ` LZ pgpξ,Xqq ´ Lξ pgpX,Zqq (3.3.30)

´ gpX, rZ, ξsq ` gpZ, rξ,Xsq ` gpξ, rX,Zsq
¯

˙

(3.3.31)
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“
r2

2

´

LξpgpX,Zqq ´ gpX,LξZq ´ gpLξX,Zq
¯

(3.3.32)

“
r2

2 pLξ gqpX,Zq. (3.3.33)

Thus, the almost Hermitian structure on the cone is Kähler if and only if ξ is Killing
and

p∇gX dηq “ 2 5gpXq ^ η @X P ΓpTMq. (3.3.34)

Therefore, the properties demanded in the statement of the proposition are equiva-
lent to M being Sasakian.

The reason that this characterization might be interesting is that from the proper-
ties stated in the proposition one can very directly construct a connection preserving
the Sasakian structure. This yields the characteristic connection of Sasakian man-
ifolds introduced in [28]. As the Levi-Civita connection of g does not preserve the
structure, one can, in particular, infer that Sasakian structures are not integrable in
the sense of section 2.2. This is reflected in the fact that Sasaki-Einstein structures
can be defined by Killing spinors as defining sections. As their Killing constants are
˘1

2 [17], these are not parallel with respect to ∇g.
Additionally, note that generically Sasakian structures on pD “ 2n`1q-dimensional
spaces are Upnq-structures rather than SUpnq-structures [17]. We will make use of
the latter in our constructions later on.

3.4 Example: The 5-Sphere

The 5-sphere S5 provides an example of a manifold which is non-trivial on the one
hand, but which carries much geometric structure on the other. Therefore, it is a
good candidate for model building of mathematical structures as well as for special
solutions to higher-dimensional physics.
The 5-sphere can be represented as the coset space [33]

S5 “
SUp3q
SUp2q . (3.4.1)

This can be seen as follows: SUp3q acts smoothly and transitively on the set of
3-dimensional complex vectors of unit norm [33], which can be identified with S5.
The stabilizer of, for example, the vector v “ p0, 0, 1q P C3 under this SUp3q-action
are those elements of SUp3q having p0, 0, 1q in their first column. For such a matrix
to be unitary, it is necessary that these also are the entries of its first row. So, it
must be a block-diagonal matrix pA, 1q P SUp3q, which requires A P SUp2q. Since
every matrix of this kind leaves v invariant, SUp2q is the stabilizer of the SUp3q-
action under consideration and S5 does indeed coincide with the homogeneous space
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SUp3q{SUp2q.
Because of this way of describing S5, we may employ some of the mathematical
structure of cosets, which we now turn our attention to. First, it is important that
every cosetM “ H{G can be seen as the base of the principal bundle pH,π,H{G,Gq.
On the total space, namely on the Lie group H, elements of h give rise to globally
defined, left-invariant vector fields and their dual left-invariant 1-forms. We can
pull these 1-forms back to the base in order to obtain local coframes with special
properties. For this purpose, be tpUλ, σλquλPΛ a covering of M with local sections of
pH,π,H{G,Gq. Let I1, . . . , IdimpHq be a basis of h and θ1, . . . , θdimpHq the induced
left-invariant 1-forms on H.
The Lie algebra of H splits into h “ g‘m as in section 2.2. We arrange the gener-
ators of h such that m “ spanRtI1, . . . , IDu and let small indices a, b, . . . run from 1
to D, as well as small indices i, j, . . . from D`1 to dimpHq. Capital indices A,B, . . .
are assumed to run from 1 to dimpHq. Then the pullback of the coframe on H to
M is given by βAλ – σλ

˚ θA.
For the βaλ to yield local coframes on M , we should first establish their linear inde-
pendence at every point of Uλ. This is achieved by recalling that the σλ are local
sections of the principal bundle H, thus implying π˚ βaλ “ pσλ ˝ πq˚ θa “ θa on G.
Therefore, dimpspanRtβ1

λ, . . . , β
D
λ uq “ D.

In order to construct global fields on M from the local pullbacks of these forms, we
need the relation between the βAλ “ σλ

˚ θA with respect to different local sections
σλ of H. Let us, therefore, briefly investigate the transformation behavior of the βAλ
upon change of σλ. The general result is

Lemma 3.4.1: Consider a homogeneous space MD “ H{G and βAλ – σλ
˚ θA as

described above. Then, for ρ, λ P Λ such that Uρλ ‰ H and σρ “ Rg ˝σλ on Uρλ, we
have

βAρ |x “ AdH
`

gpxq´1˘A
B
βBλ |x ` θ

A ˝ ϕ ˝ g˚µG |x, (3.4.2)

where ϕ : gÑ ΓpT vHq assigns to ξ P g the fundamental vector field on the principal
bundle, and µG is the Maurer-Cartan 1-form on G.

Proof. From [18] we take the formula

pRg ˝ σρq˚ |x “ pRgpxqq˚ ˝ σρ˚|x ` ϕ ˝ g
˚µG |x. (3.4.3)

Thus,
βAρ |x “ pσρ

˚ θAq|x “ θA ˝ pRg ˝ σλq˚ |x

“
`

pRgpxqq
˚ θA

˘

˝ σλ˚ |x ` θ
A ˝ ϕ ˝ g˚µG |x.

(3.4.4)

Denote by E1, . . . , EdimpHq the set of left-invariant vector fields on H generated by
the IA. Since the right-action of G on the principal bundle coincides with the right
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multiplication on H, we may compute

Rg˚ pEA|hq “
d
dt |0

Rexppt IAqg h “
d
dt |0

Rg g´1 exppt IAqg h

“
d
dt |0

RexppAdHpg´1qpt IAqq phgq “
d
dt |0

Rexppt AdHpg´1qBA IBq
phgq

“ AdHpgq
B
AEB|hg.

(3.4.5)

This is the left-invariant vector field associated to AdGpgqpIAq.
Now consider the dual 1-form. Because of

pR˚g θ
Aq|hpEBq “ θApRg˚ pEB|hqq “ AdH

`

gpxq´1˘A
B

(3.4.6)

we must have
R˚g θ

A “ AdH
`

gpxq´1˘A
B
θB. (3.4.7)

By the linearity of the pullback, the statement follows.

Corollary 3.4.2: In the situation of the preceding lemma, be Ia, a “ 1, . . . , D a ba-
sis of m, where h “ g ‘m. The left-invariant 1-forms associated to these generators
transform as

βaρ |x “ AdH
`

gpxq´1˘a
B
βBλ |x, (3.4.8)

where also B “ 1, . . . , dimpHq.

Proof. This is because the left-invariant vector field generated by ξ P g Ă h on the
Lie group H coincides with the fundamental vector field ϕpξq, generated by ξ on the
principal fiber bundleH. The reason for that is that already the right multiplications
by elements of G coincide on H for the two points of view.
Furthermore, every θa, a “ 1, . . . , D vanishes on EA as long as A ‰ a. Recall that
the structure group of the principal bundle under consideration is G, whence g˚µG
takes values in g exclusively. Therefore, its composition with ϕ yields vector fields
that are linear combinations of the Ei only, whence

θa ˝ ϕ ˝ g˚µG |x “ 0. (3.4.9)

This leaves us with the purely homogeneous transformation law.

For a reductive homogeneous space and connected G this can be restricted further
to

βaρ |x “ AdH
`

gpxq´1˘a
b
βbλ |x. (3.4.10)

Thus, we have established that the βaλ may serve as local coframes onM , and we also
have examined the relation between different coframes of this type. In the reductive
case we have seen that there exist local covers of M “ H{G with local coframes βρ
that are related by transformations matrices from AdHpGq. Hence, we have
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Corollary 3.4.3: A reductive homogeneous space M “ H{G is naturally endowed
with a G-structure. The group homomorphism from G to GLpD,Rq is given by
g ÞÑ pAdHpgqq|m.

Now we would like to go one step further. That is, for compact Lie algebra h the
local coframes constructed above can be used to define a pseudo-Riemannian metric
on M .
To see this, note that a compact Lie algebra splits as h “ g‘m, where now m “ gKK

with respect to the non-degenerate Cartan-Killing form K on h. We may then
choose pI1, . . . , IdimpHqq to be an orthonormal basis for K. Since K is preserved by
the adjoint representation, and since for reductive splittings h “ g‘m both of the
subspaces of h are invariant under AdH restricted to G, the matrices AdHpgqab lie
in Opp, qq, where pp, qq is the signature of K restricted to g.
Hence, the transformations (3.4.10), linking different coframes of the above kind
to each other, are in fact orthonormal transformations. This implies that the set
tpβ1

λ, . . . , β
D
λ quλPΛ defines a principal Opp, qq-subbundle of F pT ˚Mq and, therefore,

a pseudo-Riemannian metric of signature pp, qq on M .

After these general considerations we turn our attention back to the example of
S5 “ SUp3q{SUp2q. For the above considerations to apply directly, we should start
by isolating sup2q as contained in sup3q.
To this end, we can choose the sup3q generators Ĩ1, . . . , Ĩ8 such that the structure
constants become

f̃ 6
31 “ ´ f̃ 6

24 “ f̃ 7
14 “ ´f̃ 7

23 “ f̃ 8
12 “ ´f̃ 8

34 “
1

2
?

3
,

f̃ 8
67 “

1
?

3
,

f̃ 5
12 “ f̃ 5

34 “ ´
1
2 .

(3.4.11)

These are completely antisymmetric with respect to permutations of all the indices,
since this is an orthonormal basis for the Cartan-Killing form of sup3q as used in the
general setup before. That is, f̃ C

AB “ ´f̃ B
AC and so on, where A,B,C “ 1, . . . , 8.

All structure constants with indices that are not a permutation of the ones listed
above vanish. The sup2q-subalgebra is spanned by Ĩ6, Ĩ7 and Ĩ8.
Now, we introduce a two-parameter family of SUp2q-structures on S5 by rescaling
the generators of sup3q. Consider

Ia Ñ Ĩa “
1
δ
Ia , I5 Ñ Ĩ5 “

1
γ
I5, Ii Ñ Ĩi “ Ii (3.4.12)

for pγ, δq P R` ˆ pRzt0uq. (Flipping the sign of γ does not define a different SUp2q-
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structure.) The structure constants are changed as follows:

f̃ b
5a ÞÑ f b

5a “
1
γ
f̃ b

5a , f̃ 5
ab Ñ f 5

ab “
γ

δ2 f̃
5

ab ,

f̃ i
ab ÞÑ f i

ab “
1
δ2 f̃

i
ab , f̃ b

ia ÞÑ f b
ia “ f̃ b

ia ,

f̃ k
ij ÞÑ f k

ij “ f̃ k
ij .

(3.4.13)

A rescaling of the generators of sup3q rescales the left-invariant vector fields and
1-forms on SUp3q accordingly, and this is propagated to the coset via the pullback
as used before.
From the structure constants (3.4.11), we see that this example is indeed reductive.
Moreover, SUp2q is connected (it is well known that SUp2q » S3). Therefore,
(3.4.10) applies to the coset reduction S5 “ SUp3q{SUp2q. In addition, note that
rescaling the generators and, thus, also the βaλ does not affect the transformation law
(3.4.10), whence these coframes still furnish a Riemannian metric on S5 for every
pγ, δq P R` ˆ pRzt0uq. The infinitesimal versions of these transformations are given
by the structure constants f C

AB “ adGpIAq
C
B. This provides enough access to the

finite transformations as to investigate globally non-vanishing differential forms on
S5.
At first, in (3.4.10) there is no structure constant having an index i P t6, 7, 8u and
one index equal to 5. By the connectedness of SUp2q, AdSUp3qpgq acts trivially on
β5
λ for every g P SUp2q and λ P Λ, whence

η|Uλ – ´β5
λ, λ P Λ (3.4.14)

is a well-defined, globally non-vanishing 1-form on S5.
There are global 2-forms as well, which can be constructed in a similar manner.
Consider a combination βaλ^βbλ “ βaλbβ

b
λ´β

b
λbβ

a
λ. The transformation of a tensor

product reads

βaρ b β
b
ρ “ AdSUp3qpg

´1qac AdSUp3qpg
´1qbd β

c
λ b β

d
λ. (3.4.15)

With g “ exppε Iiq the infinitesimal version of this is

βaρ b β
b
ρ “ βaλ b β

b
λ ´ ε

´

f a
ic βcλ b β

b
λ ` f

b
id βaλ b β

d
λ

¯

`Opε2q. (3.4.16)

Thus, we obtain the infinitesimal transformation

δε
`

β1
ρ ^ β

2
ρ ` β

3
ρ ^ β

4
ρ

˘

“ ´ f 1
ia βaλ ^ β

2
λ ´ f

2
ib β1

λ ^ β
b
λ

´ f 3
ia βaλ ^ β

4
λ ´ f

4
ib β3

λ ^ β
b
λ.

(3.4.17)

Inserting e. g. i “ 6 yields

´δε
`

β1
ρ ^ β

2
ρ ` β

3
ρ ^ β

4
ρ

˘

“ f 1
63 β3

λ ^ β
2
λ ` f

2
64 β1

λ ^ β
4
λ

` f 3
61 β1

λ ^ β
4
λ ` f

4
62 β3

λ ^ β
2
λ
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“

ˆ

´
1

2
?

3
`

1
2
?

3

˙

β3
λ ^ β

2
λ (3.4.18)

`

ˆ

1
2
?

3
´

1
2
?

3

˙

β1
λ ^ β

4
λ

“ 0.

The structure constants are such that this is completely analogous for i “ 7, 8 and
permutations of the βaλ. This implies that the 2-forms defined via

ωα “
1
2 η

α
bc β

b
λ ^ β

c
λ @α “ 1, 2, 3, (3.4.19)

are globally well-defined and nowhere-vanishing. From now on we suppress the index
λ of the covering of S5. Since pη, ωαq are globally well-defined and there exist local
coframes on S5 around every x P M such that these forms have components as
in (3.2.4), we arrive at

Corollary 3.4.4: The tuple pη, ω1, ω2, ω3q defines an SUp2q-structure on S5 for all
values pγ, δq P R` ˆ pRzt0uq. That is, we have constructed a two-parameter family
of SUp2q-structures on S5.

The SUp2q structures induced for different values of the parameters γ and δ are
indeed inequivalent, since the SUp2q-transformations on the forms cannot generate
the rescalings considered in (3.4.13).
We now investigate whether there is a subset of this two-parameter family of SUp2q-
structures on S5 which even is an example for some of the special geometric struc-
tures introduced in sections 3.2 and 3.3. To this end, we compute

dη “ ´dpσ˚ θ5q “ ´σ˚ pdθ5q “
1
2 f

5
AB βA ^ βB “ ´

γ

2 δ2 ω3. (3.4.20)

For the following computations we use the notation βA1...AN “ βA1 ^ . . .^ βAN .

dω1 “ ´ dβ1 ^ β4 ` β1 ^ dβ4 ` dβ2 ^ β3 ´ β2 ^ dβ3

“ ´ f 1
25 β254 ´ f 1

28 β284 ´ f 1
36 β364 ` f 4

53 β153

` f 4
62 β162 ` f 4

38 β138 ´ f 2
51 β513 ´ f 2

46 β463

´ f 2
81 β813 ` f 3

45 β245 ` f 3
61 β261 ` f 3

84 β284

“ pf 1
25 ` f 3

45 qβ
245 ` pf 1

28 ` f 3
48 qβ

248 ` pf 1
36 ` f 2

64 qβ
346 (3.4.21)

` pf 4
35 ` f 2

15 qβ
135 ` pf 4

26 ` f 3
61 qβ

126 ` pf 4
38 ` f 2

18 qβ
138

“
1
γ
p´β524 ` β513q
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“
1
γ
η ^ ω2.

Analogously,

dω2 “ ´ dβ1 ^ β3 ` β1 ^ dβ3 ` dβ2 ^ β4 ´ β2 ^ dβ4

“ f 1
25 β253 ` f 1

28 β283 ` f 1
74 β743 ´ f 3

45 β145

´ f 3
72 β172 ´ f 3

84 β184 ´ f 2
51 β514 ´ f 2

37 β374

´ f 2
81 β814 ` f 4

53 β253 ` f 4
17 β217 ` f 4

38 β238

“ pf 1
52 ` f 4

35 qβ
235 ` pf 1

82 ` f 4
38 qβ

238 ` pf 1
47 ` f 2

37 qβ
347 (3.4.22)

` pf 3
54 ` f 2

15 qβ
145 ` pf 3

72 ` f 4
71 qβ

127 ` pf 3
84 ` f 2

18 qβ
148

“
1
γ
pβ523 ` β514q

“ ´
1
γ
η ^ ω1.

From this we see that the SUp2q-structure we are considering is hypo for any values
of γ and δ, and nearly hypo precisely for

pγ, δq “
´

´
1
3 ,˘

1
2
?

3

¯

. (3.4.23)

Hence, for these values the SUp2q-structure is double hypo, and, as it turns out, it
is even Sasaki-Einstein.

It is also interesting to ask which values of the parameters furnish a Sasakian struc-
ture on S5. From the fact that we can always choose a coframe adapted to the
SUp2q-structure in the sense that η “ ´β5 and ω3 “ β1 ^ β2 ` β3 ^ β4, we can
construct ξ and Φ such that pM, g, ξ, ηq is an almost metric contact manifold. That
is, every SUp2q-structure in 5 dimensions is contained in an ambient Up2q-structure,
similar to what we encountered for SUp3q- and Up3q-structures in 6 dimensions. Re-
call from definition 3.3.1 that if in addition dη “ 2 gpΦp¨q, ¨q holds true, pM, g, ξ, ηq

is even a metric contact manifold. This is the case for

γ “ ´4 δ2. (3.4.24)

Of course we still have to check whether or not the metric contact structure is
Sasakian. That is, we have to check whether the arising metric contact structures
are normal, i. e. whether Lξ Φ “ 0. Recall that

Φ “ β1 b e2 ´ β
2 b e1 ` β

3 b e4 ´ β
4 b e3. (3.4.25)
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Also, by applying βA to reB, eCs we obtain reA, eBs “ f C
AB eC . Additionally em-

ploying that on Ω˚pMq the Lie derivative satisfies

LX “ ιX ˝ d` d ˝ ιX @X P ΓpTMq, (3.4.26)

we compute

Le5 Φ “ ιe5pdβ1q b e2 ` β
1 b re5, e2s ´ ιe5pdβ2q b e1 ´ β

2 b re5, e1s

` ιe5pdβ3q b e4 ` β
3 b re5, e4s ´ ιe5pdβ4q b e3 ´ β

4 b re5, e3s

“ ´ pf 1
52 ` f 2

51 qβ
2 b e2 ` pf

1
52 ` f 2

51 qβ
1 b e1 (3.4.27)

´ pf 3
54 ` f 4

53 qβ
4 b e4 ` pf

3
54 ` f 4

53 qβ
3 b e3

“ 0.

While pg, η,Φ, ξq is a normal metric almost contact structure for arbitrary choice of
γ and δ, it is a metric contact structure only for γ “ ´4 δ2. Since the metric contact
structures obtained this way are even normal, this yields one-parameter family of
Sasakian structures on S5.

In summary, we have constructed a two-parameter family of hypo SUp2q-structures
on S5 “ SUp3q{SUp2q. Each of these gives rise to a normal metric almost con-
tact structure on S5. Within this family, there lies a one-parameter family of
Sasakian structures given by γ “ ´4 δ2. This subfamily is Sasaki-Einstein for
pγ, δq “ p´1

3 ,˘
1

2
?

3q, which is also the only choice of the parameters that makes
the SUp2q-structure nearly hypo and, therefore, double hypo.
However, the coset construction of S5 as considered here allows to make some of
the geometric structure carried by the 5-sphere explicit, and to get a grasp of the
interplay of the different geometric structures introduced in this chapter.
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Chapter 4

Geometry of Instantons

4.1 G-Structures and Instanton Conditions

This section is devoted to the interplay of metric G-structures and gauge theories.
We follow [2, 12] in this and the subsequent section. However, we fill in the details,
which will enable us to prove the statements of section 4.3. These in turn will have
valuable applications in the construction of instanton solutions in chapter 6.

In addition to the frame bundle of M we now consider an arbitrary principal H-
bundle pB, π,M,Hq over M . This is the principal bundle of a gauge theory on
M . Assume there exists a metric G-structure on M , i. e. a reduction of the bundle
F pTMq to a principal subbundle Q Ă F pTMq with structure group

G Ă SOpp, qq Ă GLpD,Rq. (4.1.1)

We can, thus, always construct a (semi-)Riemannian metric g on M such that the
local frames adapted to Q are orthonormal frames for g. Hence, Q is contained
in the ambient principal SOpp, qq-bundle SOpM, gq. The existence of a metric G-
structure on M does, of course, not reduce the set of possible connections on any
gauge principal bundle pB, π,M,Hq. However, we will see that one point where the
two geometric structures given by a connection on B and a metric G-structure on
M touch is Λ2T ˚M .
The geometry of the instanton equation is footed on the existence of a special iso-
morphism of vector bundles over semi-Riemannian manifolds. This is yet of purely
algebraical origin, as we will explain in the following.
Let us fix some notation first. Consider RD endowed with a non-degenerate inner
product γ of signature pp, qq, p ` q “ D. Be pviqi“1,...,D an orthonormal basis and
pθiqi“1,...,D its dual basis of pRDq˚. We put

vi – 7γpθ
iq “ γij vj P RD,

θi – 5γpviq “ γij θ
j P pRDq˚.

(4.1.2)

Embedded into GLpRDq, a basis of sopp, qq is given by (cf. [34])

tEij “ θi b vj ´ θj b vi | 1 ď i ă j ď Du. (4.1.3)

That is, with respect to the basis pviqi“1,...,D of RD the Eij have components

pEijqlk “ pδ
i
k γ

jl ´ δjk γ
ilq. (4.1.4)
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4 Geometry of Instantons

Also, note that if ρ : G Ñ GLpV q is a representation of a Lie group G on a finite-
dimensional real vector space V , the representation of G on the dual vector space
V ˚ is the inverse transposed representation

ρ´T : GÑ GLpV ˚q, ρ´T pgq “ pρpgq´1qT “ pρpgqT q´1, (4.1.5)

and we have

ρphq pviq “ ρphqji vj and ρ´T phq pθiq “
`

ρph´1q
˘T
pθiq “ ρph´1qij θ

j . (4.1.6)

The fundamental statement here is the following lemma:

Lemma 4.1.1: In the above situation, the isomorphism of vector spaces

Iγ : sopp, qq Ñ Λ2pRDq˚, Iγ
´1

2 ωij E
ij
¯

“
1
2 ωij θ

i ^ θj . (4.1.7)

is an intertwiner of the adjoint representation of SOpp, qq and the representation
ρ´T b ρ´T of SOpp, qq on Λ2pRDq˚.

Proof. Be h P SOpp, qq and ρphqij “ hij the standard representation on RD. From
the fact that SOpp, qq preserves γ we obtain

`

ρph´1q
˘i

j
“ ph´1qij “ γjk h

k
l γ

li “ h i
j . (4.1.8)

That is,
ρ´T phq pθiq “ h i

j θ
j . (4.1.9)

Since group multiplication on SOpp, qq coincides with matrix multiplication, the
adjoint action can be written as

pAdphqpEijqqab “ phE
ij h´1qab

“ hal pδ
i
k γ

jl ´ δjk γ
ilqh k

b

“ haj h i
b ´ h

ai h j
b

“ h i
n h j

m pδnb γ
ma ´ δmb γ

naq

“ ph i
n h j

m Enmqab

“

´

`

ρph´1q
˘i

n

`

ρph´1q
˘j

m
Enm

¯a

b
.

(4.1.10)

Note that the SOpp, qq property (4.1.8) is crucial here, i. e. this does not extend to
any larger subgroup of GLpD,Rq (actually, the property (4.1.8) holds for Opp, qq,
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4.1 G-Structures and Instanton Conditions

but we also need the special form of all the generators of the Lie algebra (4.1.3), as
we used it in the above computation). Thus, putting Eji “ ´Eij for j ě i,

Iγ

´

Adphq
´1

2 ωij E
ij
¯¯

“ Iγ

´1
2 ωij h

i
n h j

m Enm
¯

“
1
2 ωij h

i
n h j

m θn ^ θm

“
1
2 ωij ρphq

´T pθiq ^ ρphq´T pθjq

“

´

ρphq´T b ρphq´T
¯´1

2 ωij θ
i ^ θj

¯

.

(4.1.11)

This shows that Iγ is an intertwiner as stated.

This algebraic assertion has an important consequence for the geometry on M .

Corollary 4.1.2: On any semi-Riemannian manifold pMD, gq the intertwiner Iγ
induces an isomorphism of associated vector bundles in the following manner.
Let e P ΓU pSOpM, gqq be a local orthonormal frame of TM with dual local coframe
β. With notation as above, there is an isomorphism of vector bundles defined by

Ig : AdpSOpM, gqq Ñ Λ2T ˚M, Ig
`

re, ωsAd
˘

“ re, IγpωqsΛ2 . (4.1.12)

That is,

Ig

ˆ

”

e,
1
2 ωij E

ij
ı

Ad

˙

“

”

e,
1
2 ωij θ

i ^ θj
ı

Λ2
“

1
2 ωij β

i ^ βj . (4.1.13)

Proof. We have to show that the prescription (4.1.12) yields a globally well-defined
isomorphism of the two vector bundles.
First, linearity of Ig follows directly from the linearity of Iγ . Also, Ig projects
down to the identity on M , whence for every local orthonormal frame e the local
representation (4.1.12) of Ig is smooth.
It remains to be shown that these local representations of the action of Ig form a
globally well-defined map. Consider another local orthonormal frame ẽ such that e
and ẽ are defined on some mutual open subset U ofM . There is a smooth transition
map h : U Ñ SOpp, qq, x ÞÑ hpxq such that ẽx “ Rhpxq epxq @x P U . By the
definition of associated vector bundles,

“

e, ω
‰

Ad
“

“

Rh e, Adph
´1qpωq

‰

Ad
. (4.1.14)
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4 Geometry of Instantons

We check whether the image under Ig is independent of the representative of re, ωs:

Ig

´

“

ẽ, Adph´1qpωq
‰

Ad

¯

–
“

Rh e, Iγ
`

Adph´1qpωq
˘‰

Λ2

“

”

Rh e,
´

ρ´T ph´1q b ρ´T ph´1q
¯

`

Iγpωq
˘

ı

Λ2

“ re, IγpωqsΛ2 .

(4.1.15)

Thus, Ig is defined independently of the local orthonormal frame and, therefore,
constitutes a globally well-defined isomorphism of associated vector bundles.

Hence, on every semi-Riemannian manifold there exists this intrinsic link of the
adjoint bundle of SOpM, gq and the bundle Λ2T ˚M .

By restriction of Ig to AdpQq we obtain a subbundle of Λ2T ˚M of rank dimpgq. This
is the point where the geometries of a G-structure and a gauge principal bundle onM
are connected. One simply requires that the field strength FA P ΓpΛ2T ˚MbAdpBqq

be a section of IgpAdpQqqbAdpBq. That is, the 2-form part of FA is required to take
values in IgpAdpQqq only, instead of in the whole bundle Λ2T ˚M . This motivates
the following definitions.

Definition 4.1.3: Consider a metric G-structure Q being compatible with a semi-
Riemannian metric g on M , and let pB, π,M,Hq be a principal fiber bundle.
We call

W pQq– Ig
`

AdpQq
˘

Ă Λ2T ˚M (4.1.16)

the instanton bundle of Q.
A connection A P CpBq is called an instanton for Q, or a Q-instanton, if

FA P Γ
`

W pQq bAdpBq
˘

Ă Γ
`

Λ2pMq bAdpBq
˘

. (4.1.17)

Let us finish this section with a side remark on the geometry of adjoint bundles. The
fibers of the adjoint bundle AdpPq of an arbitrary principal bundle pP, π,M,Hq are
endowed with a Lie-algebra structure given by

r¨, ¨s : AdpPq ˆAdpPq Ñ AdpPq,
”

rp, ξs, rp, ζs
ı

AdpPq
–

“

p, rξ, ζsh
‰

AdpPq. (4.1.18)

Here, rξ, ζsh is the commutator of two elements of h. We have to check that this
prescription does indeed yield a well-defined map, i. e. that it is independent of the
representatives of the equivalence classes. To this end, denote by ϕpξq P ΓpTHq the
left-invariant vector field on H generated by ξ, and the Lie bracket on ΓpTHq by
r¨, ¨sΓpTHq. We compute

ad
`

Adph´1qpξq
˘`

Adph´1qpζq
˘

“

”

ϕ
``

Adph´1qpξq
˘

, ϕ
`

Adph´1qpζq
˘

ı

ΓpTHq |e
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“

´

Rh˚
“

ϕpξq, ϕpζq
‰

ΓpTHq

¯

|e

“
`

Rh˚ ϕ
`

rξ, ζsh
˘˘

|e
(4.1.19)

“ ϕ
´

Adph´1q
`

rξ, ζsh
˘

¯

|e

“ Adph´1q
`

rξ, ζsh
˘

.

We thus have
”

“

Rh p,Adph
´1qpξq

‰

,
“

Rh p,Adph
´1qpζq

‰

ı

AdpPq
“

“

Rh p,Adph
´1q

`

rξ, ζsh
˘‰

AdpPq

“
“

p, rξ, ζsh
‰

AdpPq , (4.1.20)

whence the definition of the bracket on AdpPq is independent of the representatives.
Due to the linearity of the Lie bracket on h, this yields a C8pMq-linear Lie bracket
on ΓpAdpPqq and, hence, induces a Lie-algebra structure on the C8pMq-module
ΓpAdpPqq.
This Lie algebroid structure has been noticed before (see e. g. [35]), but in the case
of P “ SOpM, gq for some (semi-)Riemannian metric g on M , it is mediated to
Λ2T ˚M and Ω2pMq via Ig. Note that Ig is C8pMq-linear when viewed as a map
Ig : ΓpAdpSOpM, gqq Ñ Ω2pMq of C8pMq-modules, implying that that the bracket
on Λ2T ˚M is C8pMq-linear as well. The induced Lie bracket simply reads

”1
2 ωij β

i ^ βj ,
1
2 µkl β

k ^ βl
ı

Λ2T˚M
“

1
2

´
D
ÿ

k“1
ωik µkj

¯

βi ^ βj . (4.1.21)

ΓpW pQqq then is a Lie subalgebra of Ω2pMq that is induced by Lie subalgebras
isomorphic to h on the fibers of Ω2pMq. Moreover, this structure is a Lie algebroid
(for the definition see e. g. [36]) overM modeled on either AdpPq or Λ2T ˚M if taken
together with the trivial anchor map.

4.2 Implementations of the Instanton Condition

As we have established above, the instanton condition is the requirement that the 2-
form part of the field strength of a connection lies in a certain subbundle of Λ2T ˚M .
In order to check this for a given connection on a particular geometry, one has to
identify this subbundle of Λ2T ˚M and investigate whether the 2-form part of the
field strength everywhere is a linear combination of a local basis of this bundle.
This is a problem of pure linear algebra, and further geometric features of the instan-
ton condition are by far not obvious in this formulation. For example, there seems
to be no apparent relation to the Yang-Mills equation (with torsion) for the gauge
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connection, which we would expect a proper instanton condition to imply. Thus,
we are interested in alternative ways to impose the instanton condition that make
features like this more manifest. In particular, we should clarify the relation indi-
cated in section 1.3 between the instanton condition of section 4.1 and the gaugino
equation

γpFAqpεq “ 0, (4.2.1)

which is the requirement that last line of (1.3.1) vanishes. Again we mostly follow [2,
12] in this exposition.

First, for aG-structure with simple Lie algebra g andG a proper subgroup of SOpDq,
one can construct a nowhere-vanishing 4-form on M by mapping the quadratic
Casimir of g to g b g via the Killing metric, transferring this to Ω2pMq b Ω2pMq

by means of Ig and then antisymmetrizing the result. This yields a 4-form with
G-invariant components on M . One can then show

Proposition 4.2.1: Let pMD, gq be a Riemmanian manifold, G Ă SOpDq a proper
subgroup with simple Lie algebra g, pQ, π,M,Gq a G-structure onM compatible with
g and Q P Ω4pMq the 4-form constructed via the above prescription.
Then we have for all µ P Ω2pMq that

µ P ΓpW pQqq ô ˚p˚Q^ µq “ ´µ, (4.2.2)

where ˚ is the Hodge star induced by g.

This version of the instanton condition has first been introduced in [37]. If we take
a connection A P CpBq on pB, π,M,Hq solving (4.2.2), we see upon applying the
covariant differential dA to this identity that

dA˚FA “ ´pd˚Qq ^ FA. (4.2.3)

That is, the instanton equation (4.2.2) implies the so-called Yang-Mills equation
with torsion (4.2.3). Clearly, (4.2.2) implies the Yang-Mills equation without tor-
sion whenever Q is co-closed, which is the case for integrable G-structures, i. e. on
manifolds with special holonomy [2].
On a generic SUp2q 5-manifold, the only nowhere-vanishing 1-forms which are
present generically are φ η for nowhere-vanishing function φ P C8pMq. The lin-
ear map

µ ÞÑ ˚pη ^ µq (4.2.4)

has eigenspaces and eigenvalues as required in [12], whence η must be the pD ´ 4q-
form arising from the above construction on such spaces. That is, there we have
˚Q “ η. Similarly, on generic 6-dimensional SUp3q-manifolds we have ˚Q “ ω.
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This is because Q is constructed by purely algebraic means, insensible to any geo-
metric properties of the G-structure, and the only 4-forms present on any generic
SUp3q-structure 6-manifold are ˚pφωq. Again, ω yields the desired eigenspaces and
eigenvalues.
However, we could in principle generalize this second version of the instanton con-
dition by using different nowhere-vanishing pD´ 4q-forms that may occur in certain
situations. We will encounter such a case in section 5.4.

Another important case is given when the preimage of G under the double covering
λ : SpinpDq Ñ SOpDq stabilizes a spinor in the spinor representation ρs of SpinpDq,
such that there exists a nowhere-vanishing spinor ε P ΓpSpM, gqq on M . Then we
have

Proposition 4.2.2: Let pMD, gq be a Riemannian manifold, G Ă SOpDq as de-
scribed above, and let pQ, π,M,Gq be a G-structure on M defined by a nowhere-
vanishing spinor ε P ΓpSpM, gqq on M .
Then for µ P Ω2pMq we have that

µ P ΓpW pQqq ô γpµqpεq “ 0. (4.2.5)

This is due to the fact that γpβiq γpβjq “ 2 ρspEijq on spinors of SpinpDq [34]. As
has been worked out in [2], the condition (4.2.5) implies the Yang-Mills equation
without torsion if the spinor ε is Killing with respect to the Levi-Civita connection
of the metric g.
The last version of the instanton condition brings full circle the detour into the
geometry of G-structures and instantons that we embarked on motivated by the
gaugino equation (4.2.1). Recall that this is one of the supersymmetry conditions
of heterotic supergravity (1.3.1).

These two versions of the instanton condition are much more explicit than its first
version (4.1.17). In this thesis we will mostly make use of (4.1.17) and (4.2.2), since
we will consider G-structures that either do not have a Killing spinor, or whose
Killing spinor is more difficult to handle than the generic one of e. g. a Sasaki-
Einstein SUp2q-structure in 5 dimensions.

4.3 Deformation of G-Structures

In this section we investigate the geometry of G-structures and deformations thereof
on a generic manifold M . The considerations in this chapter seem to be new to
the literature. They will have important implications on the instantons defined by
G-structures related by a special class of deformations.

Let M be a manifold of dimension D and F pTMq its frame bundle. As additional
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4 Geometry of Instantons

data, assume that there is a G-structure Q Ă F pTMq on M with structure group
G Ă GLpD,Rq. This G-structure may be defined by defining sections

τ P ΓpEq, where E “ F pTMq ˆpGLpD,Rq,ρq V (4.3.1)

for representations ρ of GLpD,Rq on a vector space V . In this case, G is defined as
the stabilizer of an element τ0 P V with respect to ρ, and for every x PM there is a
q P Qx such that

τx “ rq, τ0s, (4.3.2)

as we introduced in section 2.1. Recall from there the crucial result that for associ-
ated bundles we have

E “ F pTMq ˆpGLpD,Rq,ρq V “ QˆpG,ρ|Gq V. (4.3.3)

As in chapter 2, in our abstract considerations we use only one defining section as a
representative for all the defining sections of Q. In general, G-structures have several
defining sections simultaneously, as for instance SUp2q-structures in dimension 5 do
(cf. section 3.2).
Now we deform the G-structure Q. To this end, consider a map

h : M Ñ GLpD,Rq, x ÞÑ hpxq. (4.3.4)

This induces a map from the principal bundle F pTMq to itself, given by the pre-
scription e ÞÑ Rhpπpeqq e. The question we are interested in now is, whether or not
the image of Q under this map again is a G-structure. Recall that we view G as a
fixed subgroup of GLpD,Rq. The answer is then given by the following proposition:

Proposition 4.3.1: Let Q Ă F pTMq be a G-structure on M , and consider a map
h : M Ñ GLpD,Rq, x ÞÑ hpXq. Denote the image of Q under the right-action of h
by Q1 – RhQ. That is,

Q1 “
 

Rhpπpqqq q | q P Q
(

. (4.3.5)

Then the following statements are equivalent:

(1) Q1 is a G-structure on M .
(2) h takes values in NGLpD,RqpGq only, where

NGLpD,RqpGq–
 

a P GLpD,Rq | a g a´1 P G @ g P G
(

(4.3.6)

is the normalizer of G in GLpD,Rq.
(3) If Q has a defining section τ P ΓpEq in a vector bundle associated to F pTMq

as above, the prescription

τ 1πpqq – rRhpπpqqq q, τ0s (4.3.7)

yields a globally well-defined section of E.
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Proof. p1q ñ p2q: Assume that Q1 “ RhQ Ă F pTMq is a G structure on M . In
particular, Q1 is a principal subbundle of F pTMq and it carries a right-action of G
given by the restriction of the right-action existing on F pTMq. In this case, Q1 is
closed under this right-action of G, i. e.

Rg q
1 P Q1 @ g P G, q1 P Q1. (4.3.8)

Now for every q1 P Q1 there is a unique q P Q such that q1 “ Rhpxq q, where x “ πpq1q.
Hence,

Rg q
1 “ Rg Rhpxq q “ Rhpxq g q “ RhpxqRαphpxqqpgq q (4.3.9)

must still lie in Q1. Here we denoted the inner automorphism of H by

αph1qph2q– h1 h2 h
´1
1 . (4.3.10)

Since Q1 is defined as the image of Q under Rh, we have Rg q1 P Q1 if and only if

Rαphpxqqpgq q P Q. (4.3.11)

This is equivalent to
αphpxqqpgq P G @x PM, (4.3.12)

because Q is closed under the right-action of G, and because the right-action of G
on Q is simply transitive. But this is just the condition that hpxq P NGLpD,RqpGq for
all x PM .

p2q ñ p1q: First, note that, as Rh is a diffeomorphism on F pTMq, Q1 endowed with
the induced differentiable structure is indeed a submanifold of F pTMq. If this was
to be a G-structure onM , the restriction of the right-action of GLpD,Rq on F pTMq
should be a right-action on Q1 as well. As before, the right action is given by

Rg q
1 “ Rg Rhpxq q “ Rhpxq g q “ RhpxqRαphpxqqpgq q, (4.3.13)

which we know to be an element of Q1 since we assume statement p2q of the propo-
sition. Furthermore, as the right-action of G on Q is simply-transitive and αphpxqq
is an automorphism of G for every x PM , the above G-action on Q1 is simply tran-
sitive. Hence, Q1 is a principal G-subbundle of F pTMq, and thus, by definition, a
G-structure on M .

p2q ô p3q: In the case of p2q we have

τ 1πpqq – rRhpxq q, τ0s “ rq, ρphpxqqpτ0qs. (4.3.14)

For τ 1πpqq to be well-defined, this has to be independent of the particular choice of q.
Thus, we compute

rRhpxqRg q, τ0s “ rRαphpxq´1qpgqRhpxq q, τ0s (4.3.15)
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“ rRhpxq q, ρpαphpxq
´1qpgqqpτ0qs.

This is equal to rRhpxq q, τ0s if and only if

ρ
`

αphpxq´1q pgq
˘

pτ0q “ τ0, (4.3.16)

which is just the requirement that αphpxq´1qpgq P G. In turn, this is equivalent to
hpxq P NGLpD,RqpGq for all x PM . As h is smooth and defined globally, so is τ 1.

Definition 4.3.2: We say that the tuple pQ,Q1q of G-structures on M satisfies the
normal deformation property with respect to h if there exists a smooth map
h : M Ñ NGLpD,RqpGq, x ÞÑ hpxq such that

Q1x “ RhpxqQx. (4.3.17)

That is, for every q1 P Q1 there exists a unique q P Q such that q1 “ Rhpπpq1qq q.

Let us consider the case where the G-structure is defined by a tensor field, as for
example a Riemannian metric. The principal bundle Q of the G-structure in such a
case is the set of all frames of TM with respect to which the defining tensor field has
certain standard components. To all frames of TxM belonging to Q we now apply
the transformation

eµ ÞÑ hpxqνµ eν . (4.3.18)

We then ask, whether or not there exists a globally well-defined tensor field that takes
the very same standard components with respect to the transformed frames, that
the original tensor field took with respect to e. This is equivalent to the statement,
that the transformed frames constitute a G-structure. It is crucial that this must
hold true for all bases belonging to the original G-structure Q. As we have just
proven formally, this is the case if and only if h takes values in the normalizer of G
in GLpD,Rq exclusively.
The easiest example where this holds true is

h “ φ1D, (4.3.19)

where φ P C8pMq is a smooth, nowhere-vanishing function on M . Rh then just
rescales the bases adapted to Q, and, as h commutes with all of GLpD,Rq, this
yields a new G-structure Q1 on M .

In proposition 4.3.1 we have found a large class of deformations of that produce
new G-structures from given ones. It will also be important that if, conversely, we
were given a G-structure Q on M and a map h : M Ñ GLpD,Rq such that RhQ
is a G-structure again, we can infer that h takes values in the normalizer of G in
GLpD,Rq exclusively.
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4.3 Deformation of G-Structures

The map Rh : Q Ñ Q1 is not an isomorphism of principal G-bundles since it does
not map the right-actions of G on the respective bundles to one another. Thus,
in general, connections on Q1 are not the pullbacks of connections on Q along Rh.
Nevertheless, propositions 2.2.1 and 2.2.2 provide a bijection between CpQq and
CpQ1q in a slightly restricted situation.

Proposition 4.3.3: Assume that pQ,Q1q are two G-structures on M that satisfy
the normal deformation property with respect to h. Furthermore, let the splitting
glpD,Rq “ g‘m be invariant under AdGLpGq. We identify A P CpQq ãÑ CpF pTMqq
with its extension to a connection on F pTMq.
There exists a bijective map

fQ,h : CpQq Ñ CpQ1q, fQ,hpAq “ prg ˝A|Q1 . (4.3.20)

Proof. Proposition 2.2.2 directly implies that fQ,hpAq P CpQ1q is a connection on Q1.
In order to prove that this map is bijective, we recall that CpQq is affine vector space
modeled over Ω1

horpQ, gqpG,Adq. Due to the Ad-equivariance of elements of that vector
space, we can extend every ω P Ω1

horpQ, gqpG,Adq to a horizontal, Ad-equivariant 1-
form ω P Ω1

horpF pTMq, glpD,RqqpGLpD,Rq,Adq. From the proof of proposition 2.2.2
we see that its restriction to Q1 is horizontal and Ad-equivariant. Moreover, it is
g-valued on Q1. To see this, let e be a local section of Q. Then, e1 – Rh ˝ e is a
local section of Q1. We have

e1˚ω “ Adph´1q ˝ e˚ω. (4.3.21)

This is g-valued because e˚ω is g-valued by construction and h takes values in the
the normalizer of G.
Therefore, the auxiliary map given by

f : Ω1
horpQ, gqpG,Adq Ñ Ω1

horpQ1, gqpG,Adq, ω ÞÑ ω|Q1 (4.3.22)

is an isomorphism of vector spaces.
Consider a connection A P CpQq. Every other connection on Q is of the form A` ω

for an ω P Ω1
horpQ, gqpG,Adq. Upon application of fQ,h we obtain

fQ,hpA` ωq “ fQ,hpAq ` fpωq “ fQ,hpAq ` ω|Q1 . (4.3.23)

Since fQ,hpAq P CpQ1q and f is bijective, we can obtain every connection on Q1 by
these means. Thus, fQ,h is surjective.
If A1, A2 P CpQq, we have A1 ´A2 P Ω1

horpQ, gqpG,Adq, and

fQ,hpA1q ´ fQ,hpA2q “ fQ,hpA1 ´A2q “ fpA1 ´A2q. (4.3.24)

Due to the bijectivity of f , this is equal to zero if and only if A1 “ A2, whence fQ,h
is injective as well.
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However,
fQ,h

´1 ‰ fRhQ,h´1 , (4.3.25)

which can be seen by using local representations with respect to e and e1 “ Rh ˝ e.
The reason for this is that the prg in the definition of fQ,h truncates the inhomoge-
neous term in the transformation of A.
The local representation of fQ,hpAq reads

e1˚pfQ,hpAqq “ prg ˝
`

Adph´1q ˝ e˚A` h˚µGL
˘

(4.3.26)

“ Adph´1q ˝ e˚A` prg ˝ h
˚µGL. (4.3.27)

This bijection of CpQq and CpQ1q does, in particular, apply to normal deformations of
metric G-structures, where sopDq “ g‘n is invariant under AdSOpGq. In order that
the proposition applies, we have to make sure that the splitting glpD,Rq “ g‘m is
invariant under AdGLpGq. First, the splitting

glpD,Rq “ sopDq ‘ sym0 ‘ tr, (4.3.28)

is invariant under the adjoint action of SOpDq. Here sym0 is the space of symmetric,
traceless matrices, and tr is the space of multiples of the unit matrix. The invariance
of the splitting of sopDq under G and the fact that for metric G-structures we have
G Ă SOpDq Ă GLpD,Rq, imply the invariance of glpD,Rq “ g‘m under G.
As an example, consider G “ SOpDq and h “ φ1. The normal deformation leads
from the Riemannian metric g to φ2 g. Proposition 4.3.3 not only implies that there
is a one-to-one correspondence between connections preserving g and φ2 g, but also
that their local representations are related via (4.3.26). Therefore, once we know a
connection A preserving g, we can use both A and fQ,hpAq in computations.
Nevertheless, we will encounter special cases with simpler relations of connections
on Q and Q1 in sections 6.4.2 and 6.6.

Let us now work our way towards the instanton conditions (in the sense of (4.1.17))
induced by the G-structures Q and Q1 satisfying the normal deformation property.
We begin by considering their adjoint bundles.

Lemma 4.3.4: Assume we are given two G-structures Q and Q1 on M that satisfy
the normal deformation property with respect to h : M Ñ GLpD,Rq.
Then their adjoint bundles coincide, i. e.

AdpQq “ AdpQ1q Ă AdpF pTMqq. (4.3.29)

Proof. We have

AdpF pTMqq “ F pTMq ˆpGLpD,Rq,AdGlq glpD,Rq
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“ QˆpG,AdGl |Gq glpD,Rq (4.3.30)

“ Q1 ˆpG,AdGl |Gq glpD,Rq.

Recall that on g the restriction of AdGl to G coincides with the adjoint representation
of G, for we view G as a fixed subgroup of GLpD,Rq. Therefore,

AdpQq “ QˆpG,AdGq g “ QˆpG,AdGl |Gq g,

AdpQ1q “ Q1 ˆpG,AdGq g “ Q
1 ˆpG,AdGl |Gq g,

(4.3.31)

and, hence, both are vector subbundles of AdpF pTMqq. In particular, AdpQq is the
subbundle of AdpF pTMqq whose elements can be written as rq, ξs for some q P Q
and ξ P g. For elements of AdpQq we have

rq, ξs “ rRhpxq q, AdGlphpxq
´1qpξqs “ rq1, AdGlphpxq

´1qpξqs. (4.3.32)

As the adjoint action of hpxq preserves G in GLpD,Rq, on the Lie algebra level it
also preserves g in glpD,Rq. Hence,

rq, ξs “ rq1, AdGlphpxq
´1qpξqs P AdpQ1q Ă AdpF pTMqq. (4.3.33)

Thus, AdpQq Ă AdpQ1q, and the same same arguments hold for the converse direc-
tion as well.

Therefore, the adjoint bundles of G-structures that are related by means of a nor-
mal deformation coincide. However, this does not directly translate to the induced
instanton bundles.
First, we have to make sure that G Ă SOpDq, since we need a Riemannian metric
compatible with the G-structure in order to even define W pQq. Again, recall that
we consider G and SOpDq as fixed subgroups of GLpD,Rq, where we consider the
standard embedding of SOpDq into GLpD,Rq. Therefore, let us now restrict our-
selves to G-structures allowing for a compatible Riemannian metric.
The problem is that the transformations h : M Ñ GLpD,Rq that we consider need
not be orthogonal, whence there might be no Riemannian metric compatible with
Q and Q1 simultaneously. Thus, let g be a Riemannian metric compatible with Q
and g1 a Riemannian metric compatible with Q1. The instanton bundles are given
by

W pQq “ IgpAdpQqq and W pQ1q “ Ig1pAdpQ1qq. (4.3.34)

First, if g “ g1, the previous lemma implies that W pQq “ W pQ1q. For the general
case, consider an element µ P W pQq. With respect to a frame e adapted to Q, this
is of the form

µ “
1
2 µab β

a ^ βb “ Ig

´”

q,
1
2 µabE

ab
ı¯

, (4.3.35)
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where 1
2 µabE

ab P g Ă sopDq Ă glpD,Rq. Recall that

ea “ re, vas and βa “ re, θas, (4.3.36)

using the conventions of section 4.1.
We may express the element µ of Λ2T ˚M with respect to a local frame given by
e1 “ Rhpxq e, which is a local section of Q1. The coframe associated to this frame is

pβ1qa “ rRh ˝ e, θ
as “ re, ρ´T phq pθaqs “ re, ρph´1qab θ

bs “ ρph´1qab β
b. (4.3.37)

That is, dropping the ρ of the standard representation of GLpD,Rq on RD, we can
compute the preimage of µ under Ig1 :

µ “
1
2 µab β

a ^ βb “ µ “
1
2 hpxq

a
i µab hpxq

b
j pβ

1qi ^ pβ1qj

“ Ig1
´”

e1,
1
2 hpxq

a
i µab hpxq

b
j E

ij
ı¯

.

(4.3.38)

We are still searching for conditions on h such that the instanton bundles of Q and
Q1 “ RhQ coincide. From the above result one can see that

µ PW pQ1q ô

”

e1,
1
2 hpxq

a
i µab hpxq

b
j E

ij
ı

P AdpQ1q

ô hpxqai µab hpxq
b
j E

ij P g. (4.3.39)

Thus, the question is whether the linear map given by

µabE
ab ÞÑ hpxqai µab hpxq

b
j E

ij (4.3.40)

preserves g Ă sopDq for all x PM .
To sum up, we arrive at

Corollary 4.3.5: The instanton bundles of a pair pQ,Q1q of G-structures onM sat-
isfying the normal deformation property with respect to h : M Ñ GLpD,Rq coincide
if and only if the map

Φhpxq : sopDq Ñ sopDq, µabE
ab ÞÑ hpxqai µab hpxq

b
j E

ij (4.3.41)

preserves g as a vector subspace of sopDq for all x PM .
In particular, this is true whenever h takes values in SOpDq, that is, whenever the
two G-structures are compatible with the same Riemannian metric.
This also holds true for Φh being proportional to the identity transformation on a
subspace of sopDq containing g.
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Proof. The classification

W pQq “W pQ1q ô Φhpxqpgq Ă g @x PM (4.3.42)

is evident from the arguments that led to the corollary.
If h is SOpDq-valued, the action of h in (4.3.41) translates to the adjoint action of
SOpDq on sopDq by lemma 4.1.1. As we additionally have hpxq P NSOpDqpGq for all
x PM , this preserves the subspace g of sopDq.

Although this treatment may seem somewhat technical at this point, both of the
cases mentioned in the corollary will occur in the constructions in chapter 5 and
chapter 6. There we will find these general assertions very useful, since they will
provide us with immediate knowledge about the geometries we encounter there as
well as about how their instanton bundles are related.

As an example, let us consider a 5-manifold M5 carrying an SUp2q-structure de-
fined by pη, ωαq (cf. section 3.2). The representation of SUp2q on R5 that is used to
associate the tangent bundle to Q Ă SOpM, gq splits into a one-dimensional and a
four-dimensional representation. This can be seen from the fact that η is a defining
section whose dual singles out a 1-dimensional subbundle of TM5. Since the repre-
sentations are irreducible, every element of SUp2q Ă SOp5q commutes with matrices
that are proportional to the identity on these two invariant subspaces due to Schur’s
lemma.
Hence, we may consider a deformation of the SUp2q-structure induced by the matrix

Cpφq–

„

φ´1
14

1



, (4.3.43)

where φ P C8pM,R`q. Under this deformation, the local coframes β of the SUp2q-
structure transform as

βa ÞÑ φβa and β5 ÞÑ β5. (4.3.44)

We, therefore, infer the following statement:

Proposition 4.3.6: Let Q Ă SOpM, gq be the SUp2q-structure defined by pη, ωαq.
If the defining sections take their standard form with respect to the local section e

of Q, then the forms pη, φ2 ωαq take their standard forms with respect to the local
frame e1 “ RCpφq e.
The forms pη, φ2 ωαq therefore define an SUp2q-structure Q1 Ă SOpM, gφq, where

gφ “ η b η ` φ2 δab β
a b βb, a, b “ 1, . . . , 4. (4.3.45)

From the fact the induced deformation of the SUp2q-structure again is an SUp2q-
structure we know by proposition 4.3.1 that C takes values in the normalizer of
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sup2q in glp5,Rq. However, it is not sop5q-valued, as it changes the metric on M5.
Nevertheless, SUp2q is embedded into the upper-left p4ˆ4q-part of SOp5q, such that

sup2q Ă
!1

2 µρλE
ρλ

ˇ

ˇ

ˇ
µ5λ “ ´µλ5 “ 0

)

Ă sop5q. (4.3.46)

As the upper-left p4ˆ4q-part of C is proportional to 14, the intermediate subspace
above is invariant under ΦCpφpxqq for all x P M . Hence, the original and the new
G-structure define the same instanton bundles. This particular example has already
been used in [2], and we will reproduce the respective results from that paper in
section 6.2.
As another example, considering transformations of the form φpxq1D on MD re-
produces the known fact that the instanton condition is invariant under conformal
transformations.
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Chapter 5

SU(3)- from SU(2)-Structures

5.1 General Statements

After the general considerations of the previous chapters, we now come to more
explicit constructions. Here, the general task is to reduce abstract equations on ge-
ometric quantities to differential or algebraic equations on functions, which we can
solve explicitly.
To this end, we need geometries that are more accessible than just generic geomet-
ric spaces. We either need additional geometric data, like group actions or certain
global sections of bundles over M , that we can use in explicit constructions and
calculations, or, even more, we could use coordinate charts. These would, however,
restrict the admissible manifolds to very specific ones.
Conical extensions of generic manifolds provide a class of geometric spaces which
benefit from both these features to certain amounts. They have been used suc-
cessfully in constructions of solutions to instanton and heterotic supergravity equa-
tions for example in [2–4]. In differential geometry, cone constructions are a well-
established tool for constructions of several special geometries, see for example [17,
24,38,39].

We are still interested in constructing 6-dimensional manifolds with SUp3q-structure.
Consider a 5-dimensional Riemannian manifold pM5, gq which is endowed with a
one-parameter family of SUp2q-structures

Qr Ă F pTM5q, r P I, (5.1.1)

where I is an interval. Denote by ιr : M5 ãÑ M5ˆI, x ÞÑ px, rq the embedding of
M5 into M5ˆI as the slice at parameter value r P I. As the Qr are subbundles of
F pTM5q, we can construct embeddings

Qr ÞÑ Q̂r, per,µq ÞÑ
`

ιr˚per,µq, e6
˘

P F
`

T pM5ˆIq
˘

(5.1.2)

of Qr into F pTM5ˆIq, where er is a local section of Qr and e6 “ Br. We now require
the family tQrurPI to be smooth in the sense that the union of the images of these
SUp2q-structures on the slices of M5ˆI,

Q̂–
ğ

rPI

Q̂r Ă F
`

T pM5ˆIq
˘

, (5.1.3)

is an SUp2q-structure on M5ˆI. SUp2q is embedded into SOp5q as upper-left block
matrices, which in turn is embedded into SOp6q as upper-left block matrices, such
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that SUp2q acts trivially on e5 and e6.
Let er be a smooth family of local frames on M5, where er is adapted to Qr. This
induces a local section of Q̂ onM5ˆI which we denote by e. Thus, onM5ˆI we are
given globally well-defined sections having components with respect to e as follows:

ωα “
1
2 η

α
ab β

a
r ^ β

b
r P Ω2pM5ˆIq,

η “ ´ β5
r P Ω1pM5ˆIq, (5.1.4)

dr “ β6 P Ω1pM5ˆIq.

The foundation of the constructions in this chapter is the following proposition that
provides a procedure to construct SUp3q-structures alternative to the one in [24].

Proposition 5.1.1: Let M5 be a 5-manifold and tQrurPI be a one-parameter family
of SUp2q-structures on M , which is smooth in the above sense.

(1) If pηr, ωαr qrPI are the defining sections of Qr and φ : I Ñ R`, r ÞÑ φprq is a
smooth, positive function, then

`

η̃r, ω̃
α
r

˘

“
`

φprq ηr, φprq
2 ωαr

˘

rPI
(5.1.5)

define a smooth family tQ1rurPI of SUp2q-structures on M5.
(2) The pushforward xQ1 is an SUp2q-structure on M5ˆI that is compatible with

the metric
g̃ “ φprq2 gr ` dr2 (5.1.6)

if gr is the metric that Qr is compatible with on M5.
(3) xQ1 is contained in an SUp3q-structure P , which is given in terms of the defining

sections

ω “ ω̃3 ` dr ^ η̃ “ φ2 ω3
r ` φ dr ^ ηr, (5.1.7)

Ω` “ ω̃2 ^ η̃ ´ ω̃1 ^ dr “ φ2`φω2
r ^ ηr ´ ω

1
r ^ dr

˘

, (5.1.8)

Ω´ “ ´
`

ω̃1 ^ η̃ ` ω̃2 ^ dr
˘

“ ´φ2`φω1
r ^ ηr ` ω

2
r ^ dr

˘

. (5.1.9)

Proof. p1q is just a conformal rescaling treated already in section 4.3.
xQ1 is an SUp2q-structure on M5ˆI by the same reasoning as we gave for Q̂. Since g̃
takes its standard components with respect to the rescaled coframes, xQ1 is compatible
with g̃. Hence, p2q holds true as well.
We prove p3q by showing that pω,Ω`,Ω´q have the standard components of the
defining sections of an SUp3q-structure on a 6-manifold as in equations (3.1.14) and
(3.1.22). If β̃ is a coframe adapted to xQ1, and with β̃6 “ β6 “ dr, we have

ω “ ω̃3 ` dr ^ η̃ “ β̃1 ^ β̃2 ` β̃3 ^ β̃4 ` β̃5 ^ β̃6, (5.1.10)
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Ω` “ ω̃2 ^ η̃ ´ ω̃1 ^ dr

“
`

´ β̃1 ^ β̃3 ` β̃2 ^ β̃4˘^ p´β̃5q ´
`

β̃1 ^ β̃4 ` β̃2 ^ β̃3˘^ β̃6 (5.1.11)

“ β̃135 ´ β̃245 ´ β̃146 ´ β̃236,

Ω´ “ ´
`

ω̃1 ^ η̃ ` ω̃2 ^ dr
˘

“ ´
`

β̃1 ^ β̃4 ` β̃2 ^ β̃3˘^ p´β̃5q ´
`

´ β̃1 ^ β̃3 ` β̃2 ^ β̃4˘^ β̃6 (5.1.12)

“ β̃145 ` β̃235 ` β̃136 ´ β̃246.

This is precisely the form that the defining sections of an SUp3q-structure on a 6-
manifold take in a coframe compatible with the SUp3q-structure. Hence, this proves
p3q.

Note that the transformation pη, ωαq ÞÑ pφ η, φ2 ωαq can be seen as induced by a
transformation as introduced in definition 4.3.2. The above proposition yields a
way to obtain 6-dimensional manifolds with an SUp3q-structure from 5-manifolds
carrying families of SUp2q-structures.

It would, thus, be desirable to find a way of constructing families of SUp2q-structures
on 5-manifolds. The first example that comes to mind is the case of a constant family,
i. e. a single SUp2q-structure. This can always be lifted to an SUp2q-structure on
M5ˆI and then extended to an ambient SUp3q-structure by the above proposition.
Furthermore, we can construct smooth families of SUp2q-structures on 5-manifolds
by considering a fixed SUp2q-structure and applying a smooth family of normal
deformations as introduced in section 4.3. This yields a smooth one-parameter family
of SUp2q-structures on M5 that can then be lifted to M5ˆI via proposition 5.1.1.
Such families of deformations are induced by families of maps phrqrPI of the form

hr : M5 ÞÑ NGLp5,RqpSUp2qq, x ÞÑ hrpxq @ r P I. (5.1.13)

In order for the resulting family Qr “ Rhr Q of SUp2q-structures on M5 to be
smooth, we need that

h : M5ˆI Ñ NGLp5,RqpSUp2qq, px, rq ÞÑ hrpxq (5.1.14)

is smooth. We can, thus, view h either as a family of maps phrqrPI defined on M5,
or as a smooth map h from M5ˆI to NGLp5,RqpSUp2qq ãÑ NGLp6,RqpSUp2qq. The
embedding is induced by

GLp5,Rq ãÑ GLp6,Rq, L ÞÑ
„

L

1



. (5.1.15)

We directly conclude:
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Lemma 5.1.2: Consider an SUp2q-structure Q on M5 together with a smooth map
h : M5ˆI Ñ NGLp6,RqpSUp2qq. Then there are two ways of constructing an SUp2q-
structure on M5ˆI from this data.
First, one can apply the normal deformations given by hr to Q, obtaining a one-
parameter family Qr of SUp2q-structures on M5, which can then be lifted to an
SUp2q-structure on M5ˆI via proposition 5.1.1.
Second, one can lift the constant family of SUp2q-structures given by Qr “ Q to
M5ˆI, and afterwards apply the deformation given by h : M5ˆI Ñ NGLp6,RqpSUp2qq
to the resulting SUp2q-structure, thus again obtaining an SUp2q-structure onM5ˆI.
The SUp2q-structures on M5ˆI constructed by these means coincide. That is, ap-
plying a family of rotations and lifting via proposition 5.1.1 commute.

As h “ hprq, the SUp2q-structures resulting from the above construction are com-
patible with a φ-cone metric on M5ˆI. The φ-cones obtained this way carry an
SUp2q-structure Q̂ that is contained in an SUp3q-structure P by the last part of
proposition 5.1.1. We, therefore, have the following embeddings of principal fiber
bundles as subbundles:

Q̂ ãÑ P ãÑ SOpM5ˆI, gφq. (5.1.16)

From this we infer that the instanton bundle of Q̂ is a vector subbundle of the
instanton bundle of P,

W pQ̂q ĂW pPq. (5.1.17)

In the following we will most of the time drop the hat of the lifted SUp2q-structure.
We now turn to employing this general procedure in explicit constructions that can
also be found in [39] and [40].

5.2 Kähler-Torsion Sine-Cones

To begin with, let us consider a 5-manifold with a Sasaki-Einstein SUp2q-structure
and I “ p0,Λπq, where Λ P R` is a positive constant. As argued in section 4.3, a
conformal rescaling of the frames belonging to the SUp2q-structure yields another
SUp2q-structure. Thus, let us consider a family of conformal rescalings as induced
by

h : M5ˆI Ñ NGLp6,RqpSUp2qq, hpx, rq “ hrpxq “
1

Λ sinp rΛq

„

15
0



, (5.2.1)

i. e. βµ ÞÑ Λ sinp rΛqβ
µ, β6 ÞÑ β6. The resulting SUp2q-structure is an SUp2q-

structure on the sine-cone
´

M5ˆp0,Λπq, g “ Λ2 sin
´ r

Λ

¯2
g5 ` dr2

¯

(5.2.2)
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over M5. We denote the unaltered pullbacks of η and the ωα to the direct product
M5ˆI along the projection π : M5ˆI Ñ M5, px, rq ÞÑ x still by η and ωα. These
are the defining sections of the SUp2q-structure on M5ˆI which results from lifting
the constant family consisting of just the Sasaki-Einstein SUp2q-structure on M5.
We will often call this lift the pushforward SUp2q-structure on M5ˆI.
With this notation, the defining sections for the ambient SUp3q-structure for the
deformed SUp2q-structure are given by

ω “ Λ2 sin
´ r

Λ

¯2
ω3 ` Λ sin

´ r

Λ

¯

dr ^ η,

Ω` “ Λ3 sin
´ r

Λ

¯3
ω2 ^ η ´ Λ2 sin

´ r

Λ

¯2
ω1 ^ dr, (5.2.3)

Ω´ “ ´ Λ3 sin
´ r

Λ

¯3
ω1 ^ η ´ Λ2 sin

´ r

Λ

¯2
ω2 ^ dr,

according to (5.1.7). In order to classify this particular SUp3q-manifold, we compute
its torsion classes.

Proposition 5.2.1: The torsion classes of pM5ˆp0,Λπq, gq endowed with the above
SUp3q-structure read

W1 “W2 “W3 “ 0, W4 “ ´
2
Λ tan

´ r

2Λ

¯

dr, W5 “
3
Λ tan

´ r

2Λ

¯

dr. (5.2.4)

Proof. We compute

dω “ 2Λ sin
´ r

Λ

¯´

cos
´ r

Λ

¯

´ 1
¯

dr ^ ω3 “ ´
2
Λ tan

´ r

2Λ

¯

dr ^ ω̃3, (5.2.5)

dΩ` “ 3Λ2 sin
´ r

Λ

¯2
ω2 ^ dr ^ η “ ´ 3

Λ tan
´ r

2Λ

¯

ω̃2 ^ dr ^ η̃, (5.2.6)

dΩ´ “ ´ 3Λ2 sin
´ r

Λ

¯2
ω1 ^ dr ^ η “ ´ 3

Λ tan
´ r

2Λ

¯

ω̃1 ^ dr ^ η̃. (5.2.7)

Since Ω^ ω “ 0 and W3 P Ω2,1pMq ‘ Ω1,2pMq,

dω ^ Ω˘ “ ´W˘
1 ω ^ ω ^ ω “ 0, (5.2.8)

whence we obtain
W˘

1 “ 0. (5.2.9)

Further,
W4 “

1
2 ω

 dω and W5 “ Ω`  dΩ`. (5.2.10)

Note that the interior product  is taken with respect to the sine-cone metric in all
these cases. Here this gives

W4 “
1
2

´

ω̃3 ` dr ^ η̃
¯

 
´

´
2
Λ tan

´ r

2Λ

¯

dr ^ ω̃3
¯
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“ ´
2
Λ tan

´ r

2Λ

¯

dr (5.2.11)

and

W5 “
1
2

´

ω̃2 ^ η̃ ´ ω̃1 ^ dr
¯

 
´

´
3
Λ tan

´ r

2Λ

¯

ω̃2 ^ dr ^ η̃
¯

“
3
Λ tan

´ r

2Λ

¯

dr. (5.2.12)

Now one can check that dω “W4 ^ ω, implying W3 “ 0.

The fact that 3W4 ` 2W5 “ 0, with both W4 and W5 being exact and real, indi-
cates that this SUp3q-structure is mapped to a Calabi-Yau SUp3q-structure via a
conformal equivalence [22]. In fact, the conformal equivalence of the sine-cone to
the cylinder over M5 has been worked out explicitly for example in [39,40]. On the
other hand, the cone over M5 has been shown to be Calabi-Yau, as well as confor-
mally equivalent to the cylinder overM5 e. g. in [2]. Composing these two conformal
equivalences yields a conformal equivalence of the sine-cone under consideration here
to the Calabi-Yau cone over M5. This also maps the respective SUp3q-structures
onto one another in consistency with the results obtained above.
Recall from section 3.1 that we defined an SUp3q-structure to be Kähler-torsion if
its ambient Up3q-structure defined by pg, ωq is Kähler-torsion.

Corollary 5.2.2: The SUp3q-structure pg, ω,Ωq on the sine-cone over a Sasaki-
Einstein 5-manifold as considered here is Kähler-torsion.

Proof. From the torsion classes (5.2.4) one directly sees that pM, g, ωq is a complex
manifold. Regarding the Kähler-torsion property we make use of theorem 10.1
in [28], which states that the torsion 3-form of the canonical, or Bismut, connection
of an almost Hermitian manifold is given by

5gpT
Bq “ ´Jpdωq ` 5gpNq. (5.2.13)

Since CsinpMq is complex, N vanishes identically and we have

5gpT
Bq “ ´ Jpdωq “ ´ 2

Λ η̃ ^ ω̃3

“
i

2Λ tan
´ r

2Λ

¯

pθ3 ` θ3̄q ^ pθ1 ^ θ1̄ ` θ2 ^ θ2̄q,

(5.2.14)

where we made use of the θj introduced in (3.1.16). This is the real part of a p2, 1q-
form, whence the SUp3q-structure under consideration is indeed Kähler-torsion.

However, 2W4 `W5 ‰ 0, such that this SUp3q-structure is not Calabi-Yau-torsion.
In particular, the Bismut connection preserves g and ω, but fails to preserve Ω.
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Note, furthermore, that in the limit Λ Ñ 8 this Kähler-torsion SUp3q sine-cone
becomes precisely the Calabi-Yau metric cone over M mentioned above. In this
limit, r tends to the standard coordinate on this metric cone, and, as W4,W5 Ñ 0,
the Bismut connection converges to the Levi-Civita connection on the cone.

5.3 Nearly Kähler Sine-Cones

In this section we continue where we left off in the last section, namely at the Kähler-
torsion SUp3q-structure on the sine-cone over a Sasaki-Einstein SUp2q 5-manifold
M5. We construct a new SUp3q-structure on the sine-cone from this first one by
applying a rotation in the sense of section 4.3.
With µ̂, ν̂ “ 1, . . . , 6, we extend the ’t Hooft symbol η2 to a p6ˆ6q-matrix by putting
η2
µ̂ν̂ “ 0 whenever µ̂ “ 5, 6 or ν̂ “ 5, 6. Consider the map

T : M5ˆp0,Λπq Ñ SOp6q, T px, rq “ exp
´ r

2Λ η2
¯

, (5.3.1)

or explicitly,

T px, rq “

»

—

—

—

—

—

–

cosp r2Λq 0 ´ sinp r2Λq 0
0 cosp r2Λq 0 sinp r2Λq

sinp r2Λq 0 cosp r2Λq 0
0 ´ sinp r2Λq 0 cosp r2Λq

12

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5.3.2)

This can be understood as a family pTrqrPp0,Λπq of maps from M to SOp5q, which is
embedded into SOp6q as upper-left block matrices, as elaborated on in section 5.1.
The rotation induced by T is applied to the SUp2q-structure Q on the sine-cone,
such that the induced transformation of the coframes of Q given by

βµ̂ ÞÑ T µ̂ν̂ β
ν̂ . (5.3.3)

This corresponds to acting on F pT pM5ˆIqq with RT ´1 . We may first consider the
family pTrqrPp0,Λπq of rotations on M in 5 dimensions.

Lemma 5.3.1: Let M5 be a 5-manifold endowed with a Sasaki-Einstein SUp2q-
structure Q5 defined by pη, ωαq and be pTrqrPp0,Λπq as defined above.
Then RT ´1

r
Q5 — Q15,r is a different SUp2q-structure on M defined by

ηr “ η,

ω1
r “ cos

´ r

Λ

¯

ω1 ´ sin
´ r

Λ

¯

ω3,

ω2
r “ ω2,

ω3
r “ cos

´ r

Λ

¯

ω3 ` sin
´ r

Λ

¯

ω1.

(5.3.4)
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Proof. We only have to show that pηr, ωαr q take the standard components (3.2.4)
with respect to the rotated bases

βµr – pTrqµν βν . (5.3.5)

Making use of the shorthand notation βa1...ak – βa1 ^ . . .^ βak we compute

ω1
r “ cos

´ r

Λ

¯

ω1 ´ sin
´ r

Λ

¯

ω3

“

´

cos
´ r

2Λ

¯2
´ sin

´ r

2Λ

¯2¯
`

β14 ` β23˘ (5.3.6)

´ 2 cos
´ r

2Λ

¯

sin
´ r

2Λ

¯

`

β12 ` β34˘

“ β14
r ` β

23
r .

Furthermore,

ω2
r “ ω2

“ ´

´

cos
´ r

2Λ

¯2
` sin

´ r

2Λ

¯2¯
`

β13 ` β24˘ (5.3.7)

“ ´ β13
r ` β

24
r

and

ω3
r “ cos

´ r

Λ

¯

ω3 ` sin
´ r

Λ

¯

ω1

“

´

cos
´ r

2Λ

¯2
´ sin

´ r

2Λ

¯2¯
`

β12 ` β34˘ (5.3.8)

` 2 cos
´ r

2Λ

¯

sin
´ r

2Λ

¯

`

β14 ` β23˘

“ β12
r ` β

34
r .

The computation for η is trivial, since β5 is invariant under all Tr, r P p0,Λπq.

We write pη̃, ω̃αq for the lifts of the pη,r ωαr q to the sine-cone, and by proposition 5.1.1,
we obtain another set of defining sections for an SUp3q-structure on the sine-cone.
It is given by pg, ω,Ωq, where g is the sine-cone metric and ω and Ω are as in (5.1.7).

Proposition 5.3.2: The SUp3q-structure on the sine-cone over a Sasaki-Einstein
5-manifold as constructed here is nearly Kähler.

Proof. First, we compute

dη̃ “ d
´

Λ sin
´ r

Λ

¯

η
¯

“ cos
´ r

Λ

¯

dr ^ η ` 2Λ sin
´ r

Λ

¯

ω3, (5.3.9)
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dω̃1 “ d
ˆ

Λ2 sin
´ r

Λ

¯2´
cos

´ r

Λ

¯

ω1 ´ sin
´ r

Λ

¯

ω3
¯

˙

“ ´
3
Λ dr ^ ω̃3 ` 2Λ sin

´ r

Λ

¯

dr ^ ω1 ´ 3Λ sin
´ r

Λ

¯

cos
´ r

Λ

¯

η̃ ^ ω2, (5.3.10)

dω̃2 “ d
´

Λ2 sin
´ r

Λ

¯2
ω2

¯

“
2
Λ cos

´ r

Λ

¯

dr ^ ω̃2 ` 3Λ sin
´ r

Λ

¯

η̃ ^ ω1, (5.3.11)

dω̃3 “ d
ˆ

Λ2 sin
´ r

Λ

¯2´
cos

´ r

Λ

¯

ω3 ` sin
´ r

Λ

¯

ω1
¯

˙

“
3
Λ dr ^ ω̃1 ` 2Λ sin

´ r

Λ

¯

dr ^ ω3 ´
3
Λ η̃ ^ ω̃2. (5.3.12)

Hence, we have

dω “ d
´

ω̃3 ` dr ^ η̃
¯

“
3
Λ dr ^ ω̃1 ´

3
Λ η̃ ^ ω̃2 “ ´

3
Λ Ω`. (5.3.13)

On the other hand,
dΩ´ “ ´ d

´

ω̃1 ^ η̃ ` ω̃2 ^ dr
¯

“
2
Λ ω̃3 ^ ω̃3 `

4
Λ ω̃3 ^ dr ^ η̃

“
2
Λ ω ^ ω,

(5.3.14)

whence this SUp3q-structure is nearly Kähler, by definition 3.1.5. Its only non-
vanishing torsion class is W´

1 “ λ “ 2
Λ .

By writing ω and Ω in terms of η and the ωα, one can see that we have constructed
the same nearly Kähler sine-cone over Sasaki-Einstein 5-manifolds which has been
obtained in [24] by the use of flow equations. We, in contrast, gave a more explicit
way of arriving at this nearly Kähler sine-cone by means of deformations as discussed
in section 4.3 and proposition 5.1.1.
In the limit Λ Ñ 8, the rotation T becomes trivial and the metric approaches the
cone metric. In this large-volume limit, the nearly Kähler SUp3q-structure sine-cone
tends to the Calabi-Yau cone since W1 Ñ 0.

5.4 Half-Flat Cylinders

The third construction we would like to consider is an SUp3q-structure on the direct
product M5ˆI. The interval can very well be the complete real line. In this case
the resulting Riemannian manifold M5ˆI endowed with the direct-product metric
is usually called the cylinder overM5. We will, however, even for a bounded interval
I call M5ˆI with the direct-product metric a cylinder over M5.
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5 SU(3)- from SU(2)-Structures

We lift the Sasaki-Einstein SUp2q-structure ofM5 to the direct product and employ
the deformation

β1
z “ cospζqβ4 ` sinpζqβ3, β2

z “ ´ β1,

β3
z “ β2, β4

z “ cospζqβ3 ´ sinpζqβ4,

β5
z “ % β5, β6

z “ dr “ β6,

(5.4.1)

where ζ P r0, 2πs and % P R` are two constant parameters. The resulting Riemannian
manifold is the cylinder over the Riemannian manifold

pM5, g5,% “ δab β
a b βb ` %2 β5 b β5q. (5.4.2)

Lemma 5.4.1: Let M5 be a 5-manifold carrying a Sasaki-Einstein SUp2q-structure
Q5 defined by pη, ωαq, and let βz be as defined above.
Then these new coframes define a new SUp2q-structure Q5,pζ,%q on M5 for all pa-
rameter values pζ, %q P r0, 2πs ˆ R`, which is defined by

ηz “ % η,

ω1
z “ ´ ω3,

ω2
z “ cospζqω2 ` sinpζqω1,

ω3
z “ cospζqω1 ´ sinpζqω2.

(5.4.3)

Proof. A direct computation shows

ω1
z “ ´

`

cospζq2 ` sinpζq2
˘

β12 ´ β34 “ β14
z ` β

23
z ,

ω2
z “ cospζq

`

´ β13 ` β24˘` sinpζq
`

β14 ` β23˘ “ ´β13
z ` β

24
z ,

ω3
z “ cospζq

`

β14 ` β23˘` sinpζq
`

β13 ´ β24˘ “ β12
z ` β

34
z .

(5.4.4)

This already completes the proof, since with respect to the coframes βz the defin-
ing forms pηz, ωαz q have the standard components of defining sections of an SUp2q-
structure.

Note that we do not consider the parameters ζ and % to be related to the cone
direction, in contrast to the nearly Kähler construction. In the present case, ζ and
% are constant, free parameters. Employing the rotation on M5 for fixed values of
the parameters, lifting the resulting SUp2q-structure to M5ˆI and extending it to
an SUp3q-structure defined by pω,Ωq from pηz, ω

α
z q as in (5.1.7), we arrive at

Proposition 5.4.2: The SUp3q-structure on the cylinder over pM5, g5,%q defined
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by pω,Ωq has the following torsion classes:

W´
1 “

3` 2%2

3% , W`
1 “ 0,

W´
2 “

4%2 ´ 3
3%

`

ω3
z ´ 2 dr ^ ηz

˘

, W`
2 “ 0,

W3 “
2%2 ´ 3

2%
`

ω2
z ^ dr ` ω1

z ^ ηz
˘

, W4 “ 0, W5 “ 0.

(5.4.5)

Proof. First, we compute the differentials

dω “ d
`

ω3
z ` dr ^ ηz

˘

“ ´
3
%
ω2
z ^ ηz ` 2%ω1

z ^ dr, (5.4.6)

dΩ` “ d
`

ω2
z ^ ηz ´ ω

1
z ^ dr

˘

“ 0, (5.4.7)

dΩ´ “ ´ d
`

ω1
z ^ ηz ` ω

2
z ^ dr

˘

“
3
%
ω3
z ^ dr ^ ηz ` 2%ω3

z ^ ω
3
z . (5.4.8)

Then we compare
dΩ´ ^ ω “

´3
%
` 2

¯

ω3
z ^ ω

3
z ^ dr ^ ηz (5.4.9)

to
ω ^ ω ^ ω “ 3ω3

z ^ ω
3
z ^ dr ^ ηz. (5.4.10)

Thereby, we obtain

W´
1 “

3` 2%2

3% and W`
1 “ 0. (5.4.11)

We proceed with

W4 “
1
2 ω

 dω “ 0 and W5 “ Ω`  dΩ` “ 0. (5.4.12)

This leaves us with
dω “ ´3

2 W
´
1 Ω` `W3, (5.4.13)

that is,

W3 “ ´
3
%
ω2
z ^ ηz ` 2%ω1

z ^ dr ` 3` 2%2

2%
`

ω2
z ^ dr ´ ω1

z ^ ηz
˘

“
2%2 ´ 3

2%
`

ω1
z ^ dr ` ω2

z ^ ηz
˘

.

(5.4.14)

Finally, there is
dΩ “ iW´

1 ω ^ ω `
`

W`
2 ` iW

´
2
˘

^ ω, (5.4.15)
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whence
`

W`
2 ` iW

´
2
˘

^ ω “ i
4%2 ´ 3

3%
`

ω3
z ^ ω

3
z ´ ω

3
z ^ dr ^ ηz

˘

. (5.4.16)

Thus, we arrive at

W`
2 “ 0 and W´

2 “
3´ 4%2

3%
`

ω3
z ´ 2 dr ^ ηz

˘

. (5.4.17)

Note that ω  W2 “ 0 and ω  W3 “ 0 are indeed satisfied.

By definition 3.1.5, this directly leads to

Corollary 5.4.3: The SUp3q-structure on the cylinder over pM5, g5,%q defined by
pω,Ωq is half-flat for all pζ, %q P r0, 2πs ˆ R`.

We have constructed a two-parameter family of SUp2q-structures starting from a
Sasaki-Einstein SUp2q-structure in five dimensions and lifted this family to a two-
parameter family of SUp3q-structures on M5ˆI, where I is an open interval. All
SUp3q-structures obtained this way are half-flat. Note that

W2 “ 0 ô % “

?
3

2 . (5.4.18)

This will be of interest in section 6.6.

5.5 Relevance for String Compactifications

In this chapter we constructed 6-dimensional manifolds with an SUp3q-structure
from 5-manifolds endowed with a Sasaki-Einstein SUp2q-structure. The Kähler-
torsion and nearly Kähler sine-cones obtained this way are 6-manifolds which can
be extended to compact 6-manifolds, possibly with conical singularities, by taking
their topological closure. However, note that due to the sine-factors, the sections
defining the SUp3q-structures tend to zero at the tips of the sine-cone. Thus, even in
cases where the metric does not become singular at the tips, as for example for M5

being the round 5-sphere, the SUp3q-structures we constructed here will not extend
to the completion of the sine-cone. However, note that as pM5, g5q is Einstein for
the sine-cone constructions, the sine-cone will be Einstein as well. Due to this fact,
the sine-cones are of constant scalar curvature, whence there will be no singularities
in at least the scalar curvature at the tips.
Both SUp3q-structures on the sine-cones can be seen as defined by a Killing spinor.
In [12] it has been shown that sine-cones over Killing-spinor manifolds are again en-
dowed with a Killing spinor. This is similar to Bär’s famous theorem that the metric
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cones over Killing spinor manifolds carry a parallel spinor [38]. For nearly Kähler
spaces the Killing-spinor property is proven for example in [28, 41]. The sine-cones
constructed in this chapter are, therefore, suitable to appear in flux compactifica-
tions of heterotic string theory.
Half-flat SUp3q-structures turn out to be too broad a class to be defined by Killing
spinors. Instead, they are defined by generalized Killing spinors [30]. These are
nowhere-vanishing sections of the spinor bundle of M6, but in general the satisfy
∇gX ε “ γpApXqqpεq with a non-trivial tensor field A P EndpTMq. As these struc-
tures are still defined by a spinor, one can still formulate the spinorial version of the
instanton condition (4.2.5). However, this seems to no longer imply the (torsion free)
Yang-Mills equations, such that the instanton condition might be an additional con-
straint rather than already implying the field equation for the gauge field in heterotic
supergravity. Half-flat structures are prominent in heterotic flux compactifications,
see e. g. [42].
Note that as long as we consider a bounded interval in section 5.4, the resulting half-
flat manifolds extend to compact spaces, since all the structure can be extended to
the boundary values of the cone parameter smoothly. These may, therefore, well be
considered as internal spaces in flux compactifications of the heterotic string.
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Chapter 6

Construction of Instantons

6.1 Instantons on Conical 6-Manifolds: General Idea

With the background on the geometry of instantons accumulated in chapter 4 at
hand, we use knowledge about G-structures and defining sections elaborated in chap-
ter 2 to formulate a general ansatz for the reduction of the instanton equation on
conical manifolds, and use this to obtain explicit instanton solutions on the spaces
constructed in chapter 5. The principal idea of the constructions in this sections
has already appeared in [1]. Here, we formalize these considerations, such that
some results and constraints become clearer. In particular, the origin of the con-
straint (6.1.12) becomes very clear in these geometrical terms.

In the following we assume pM, gq to be a D-dimensional Riemannian manifold en-
dowed with a G-structure Q, and we consider a gauge principal bundle pB, π,M,Hq

over M as additional data. Suppose that, as principal bundles, Q is a bundle reduc-
tion of B. That is, we have the following structure of bundle reductions.

QˆG

BˆHSOpM, gq ˆ SOpDq

ιQ,SO ˆ ιG Λˆ λ

(6.1.1)

In particular, there is an open covering tpUσ, eσquσPΣ of M by local sections of Q.
In the above situation, this is an open covering of M by local sections of SOpM, gq

as well, since Q is a subbundle of SOpM, gq.
Let ρ : GÑ GLpRDq the representation that associates TM to Q, i. e.

TM “ SOpM, gq ˆpSOpDq,ρq RD “ QˆpG,ρ|Gq R
D. (6.1.2)

Recall that if vµ, µ “ 1, . . . , D is a basis of RD and θµ, µ “ 1, . . . , D is a basis of
RD˚, we have

peσqµ “ reσ, vµs P ΓpTUMq and pβσq
µ “ reσ, θ

µs P ΓpT ˚UMq (6.1.3)

in the language of associated vector bundles. We may thus write

eσpxq “
`

eσ 1 |x, . . . , eσD |x
˘

(6.1.4)
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as a local orthonormal frame of TUσM for all x P Uσ. Additionally, recall that if
the representation on RD reads ρpgqpvµq “ ρpgqνµ vν , the representation on pRDq˚ is
ρ´T , and

ρ´T pgqpθµq “
`

ρ´T pgq
˘ µ

ν
θν “

`

ρT pg´1q
˘ µ

ν
θν “ ρpg´1qµν θ

ν . (6.1.5)

Furthermore, since Q is a bundle reduction of B, the open covering tpUσ, eσquσPΣ
induces an open covering tpUσ, pΛ ˝ eqσquσPΣ of M by local sections of B. For
compactness of notation we write êσ – Λ ˝ eσ.
Now, let A P CpQq be an instanton for Q. This induces a connection Â P CpBq,
which arises from the pushforward of the horizontal tangent spaces on Q via Λ˚A.
In particular, A and Â are related as (cf. [18] or appendix A.2),

êσ
˚Â “ pΛ ˝ eσq˚Â “ λ˚ ˝

`

eσ
˚A

˘

@σ P Σ. (6.1.6)

Our goal is to find other instantons that are connections on B. As CpBq is an affine
vector space over Ω1

horpB, hq
pH,AdHq, we can write any A1 P CpBq as

A1 “ Â`X, where X P Ω1
horpB, hq

pH,AdHq. (6.1.7)

In order to check whether such a connection is an instanton, we have to compute its
field strength. To this end, let tIB |B “ 1, . . . , dimpGqu be a basis of g. Additionally,
the local representations of X with respect to eσ are given by

`

êσ
˚X

˘

µ
–

`

êσ
˚X

˘`

peσqµ
˘

. (6.1.8)

Lemma 6.1.1: With respect to the orthonormal coframe pβσqµ and with the nota-
tion introduced above, the local representation of the field strength of A1 “ Â ` X

reads

êσ
˚F Â`X “ λ˚ ˝ eσ

˚FA ` d
`

êσ
˚X

˘

µ
^ pβσq

µ

`
1
2

´

Tµνκ
`

êσ
˚X

˘

µ
`
“`

êσ
˚X

˘

ν
,
`

êσ
˚X

˘

κ

‰

¯

b pβσq
ν ^ pβσq

κ (6.1.9)

`

´

“

λ˚pIBq,
`

êσ
˚X

˘

µ

‰

´
`

ρ˚pIBq
˘ν

µ
pêσ

˚Xqν

¯

b peσ
˚AqB ^ pβσq

µ.

Tµνρ is the torsion of A as a connection on F pTMq with respect to the frame eσ.

Proof. We start from the generic form of the field strength and compute

êσ
˚F Â`X “ êσ

˚
´

dpÂ`Xq ` 1
2 adpÂ`Xq

˝
^ pÂ`Xq

¯

“ êσ
˚F Â ` êσ

˚dX ` êσ˚
`

adpÂq
˝
^ pXq

˘

`
1
2 êσ

˚
`

adpXq
˝
^ pXq

˘
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“ λ˚ ˝ eσ
˚FA ` dpêσ˚Xqµ b pβσqµ ` pêσ˚Xqµ b dpβσqµ (6.1.10)

` adpêσ
˚Âq

˝
^ pêσ

˚Xq `
1
2 ad

`

pêσ
˚Xqν

˘`

pêσ
˚Xqκ

˘

b pβσq
ν ^ pβσq

κ.

Here we have used that pullbacks and exterior differentials commute. Now we make
use of êσ˚Â “ λ˚ ˝ eσ

˚A “ psσ
˚AqB b λ˚pIBq and write adpξ1qpξ2q “ rξ1, ξ2s.

Employing the Maurer-Cartan identity we obtain

dpβσqµ “ ´ ρ˚peσ
˚Aq

˝
^ pβσq

µ ` Tµ

“ ´
`

ρ˚pIBq
˘µ

ν
peσ

˚AqB ^ pβσq
µ `

1
2 T

µ
νκ pβσq

ν ^ pβσq
κ,

(6.1.11)

where T P Ω2pM,TMq is the torsion tensor of A as a connection on F pTMq. This
directly yields (6.1.9).

Thereby, we are provided with an expression for the field strength of A1 in terms of
the field strength and the torsion of A, and the local components pêσ˚Xqν of the
Ad-equivariant, horizontal 1-form X on B.
While we are comfortable working with the quantities derived from A, we do not
have much control over the components of X. In particular, in order to formulate
an ansatz for a possible instanton, we would have to assign a value to these com-
ponents for every x P M . Even more, we would have to specify a certain covering
tpUσ, eσquσPΣ of M , for the components of any section of associated bundles depend
on the chosen trivialization, i. e. the chosen local frames. In other words, the local
representations of X as used in the above lemma strongly depend on the choice of
the local sections. However, on a generic manifold with a generic G-structure, there
is no way of explicitly choosing such a covering of M by local frames.
Thus, the only way we have access to the components pêσ˚Xqν of X is to choose X
in a way such that its components are independent of the choice of local sections of
Q. This turns out to be possible, but imposes certain severe constraints on X.

Lemma 6.1.2: Consider a G-structure Q on M and a gauge bundle pB, π,M,Hq

over M which are related by bundle reduction as above. Let ρ denote the represen-
tation that associates TM to Q.
Then, if G is connected, X has the same components with respect to any two local
sections e, e1 : U Ñ Q if and only if with respect to either of the sections

“

λ˚pIBq,
`

êσ
˚X

˘

µ

‰

´
`

ρ˚pIBq
˘ν

µ
pêσ

˚Xqν “ 0. (6.1.12)

Proof. The local representation of X with respect to e is given by ê˚X “ pΛ˝ eq˚X.
We decompose this with respect to the local frame e “ peµq. That is, as before,

pê˚Xqµ “ ê˚X peµq. (6.1.13)
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Now let us consider a different section e1 that is related to e by means of the transition
map g : U Ñ G, i. e.

e1 “ Rg ˝ e. (6.1.14)

Then we have

ê1˚X “ pΛ ˝ e1q˚X “ pRλpgq ˝ Λ ˝ eq˚X “ AdH
`

λpg´1q
˘

˝ ê˚X (6.1.15)

and
e1µ “ re

1, vνs “ rpRg ˝ eq, vµs “ re, ρpgqpvµqs “ ρpgqνµ eν . (6.1.16)

Hence, we may compute

pê1˚Xqµ “ ê1˚X pe1µq

“
`

AdH
`

λpg´1q
˘

˝ ê˚X
˘`

ρpgqνµ eν
˘

“ AdH
`

λpg´1q
˘

˝ ρpgqνµ pê
˚Xqν .

(6.1.17)

We observe that this equals pê˚Xqν for any choice of e and e1 if and only if

pê˚Xqµ “ AdH
`

λpg´1q
˘

˝ ρpgqνµ pê
˚Xqν @ g P G. (6.1.18)

This is merely the constraint which states that pê˚Xqµ|x is an invariant element in
the (anti-)representation g ÞÑ ρT pgq b Adpλpg´1qq. By putting g “ exppt IBq and
taking the derivative with respect to t at t “ 0, this implies the infinitesimal version
of this invariance:

0 “
“

λ˚pIBq, pê
˚Xqν

‰

´ ρ˚pIBqq
µ
ν pê

˚Xqµ. (6.1.19)

Conversely, by the exponential map, infinitesimal invariance under linear represen-
tations integrates to finite invariance for connected G.

Thus, whenever (6.1.12) is satisfied for an X P Ω1
horpB, hq

pH,AdHq, it has frame-
independent components with respect to local sections of Q and their images in B

under the bundle reduction Λ.
Assuming this property in (6.1.9), the field strength of Â`X gets simplified.

Corollary 6.1.3: In the above situation, if X has frame-independent components,
the local representation of the field strength of A1 “ Â`X reads

êσ
˚F Â`X “ λ˚ ˝ eσ

˚FA ` d
`

êσ
˚X

˘

µ
^ pβσq

µ

`
1
2

´

Tµνκ
`

êσ
˚X

˘

µ
`
“`

êσ
˚X

˘

ν
,
`

êσ
˚X

˘

κ

‰

¯

b pβσq
ν ^ pβσq

κ.
(6.1.20)
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Frame-independence of the components of X allows us to assign values to these com-
ponents, which depend solely on the position x PM and not on the specific choice of
local frame, as long as this is a local section of Q. Of course, this is still not possible
explicitly on a generic manifold. However, for example if there are trivial directions
in M , i. e. topologically MD “ M̃dˆI1ˆ . . .ˆID´d, where I1, . . . , ID´d are intervals
with coordinates r1, . . . , rD´d, we could put pê˚Xqµ “ pê˚Xqµpr1, . . . , rD´dq.
In particular, this applies to the conical 6-manifolds, which we constructed in chap-
ter 5. Therefore, we now specialize to manifolds of that type. That is, we consider
6-dimensional Riemannian manifolds of the type of a φ-cone over a 5-manifold, i. e.

`

M6, gq “
`

CφpM
5q, g

˘

“
`

M5ˆI, φ2 g5 ` dr2˘. (6.1.21)

We assume that M6 is endowed with an SUp2q-structure Q, which is a reduction of
an SUp3q-structure P. As the gauge principal bundle we choose

B “ P. (6.1.22)

Thus, we have the following structure of bundle reductions:

Qˆ SUp2q

P ˆ SUp3qSO
`

M6, g
˘

ˆ SOp6q (6.1.23)

All the maps in this diagram are inclusions as subbundles or subgroups, respectively,
just as they occurred in chapter 5.
To fit the above considerations, we consider a connection A P CpQq onQ, extend it to
Â P CpPq and perturb it by a frame-independent X P Ω1

horpP, sup3qqpSUp3q,AdSUp3qq.
Taking r to be the natural coordinate on the interval I, we restrict ourselves to the
case, where

pê˚Xqµ “ pê
˚Xqµ prq (6.1.24)

depends on the cone direction only. We again take µ “ pa, 5q and µ̂ “ 1, . . . , 6.
Furthermore, sinceX is frame-independent, we drop the sections eσ in the remainder
of this chapter wherever displaying them is not necessary, but keep in mind that
all the local expressions are written down with respect to certain choices of local
sections. We thus write

pê˚Xqµ “ Xµ, peσqµ “ eµ and pβσq
µ “ βµ. (6.1.25)

If we assume that X6 “ 0, the field strength of Â`X reads

êσ
˚F Â`X “ λ˚ ˝ eσ

˚FA `
´

LBrXµ ` T
δ
6µ Xδ

¯

b dr ^ βµ

`
1
2

´

Tµνκ Xµ `
“

Xν , Xκ

‰

¯

b βν ^ βκ
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“ λ˚ ˝ eσ
˚FA (6.1.26)

´

´

LBrXµ ` T
δ
6µ Xδ

¯

b

´

βµ ^ β6 ´
1
2 N

µ
νκ β

ν ^ βκ
¯

`
1
2

´

Tµνκ Xµ `
“

Xν , Xκ

‰

´Nµ
νκ

`

LBrXµ ` T
δ
6µ Xδ

˘

¯

b βν ^ βκ.

We have added and subtracted 1
2 N

µ
νκ LBrXµbβ

ν^βκ, wherein N P Ω2pM6, TM6q.
The additional term appearing in the second line above is intended to make the 2-
form part of that line satisfy the instanton condition. This anticipates that for
particular choices of N , the locally defined forms given by

βµ ^ β6 ´
1
2 N

µ
νκ β

ν ^ βκ @µ “ 1, . . . , 5 (6.1.27)

will be instantons for the SUp3q-structure P on the respective 6-manifolds.
Finally, the splitting

sup3q “ sup2q ‘m (6.1.28)

is SUp2q-invariant, as observed in chapter 3. From section 3.4 one can see that, as
vector spaces, m » R5. Moreover, as representations of SUp2q on R5,

pAdSUp3qq|SUp2q “ ρ|SUp2q, (6.1.29)

where ρ is the standard representation of GLp5,RDq on RD. Therefore,

TM5 “ SOpM5, g5q ˆpSOp5q,ρq R5

“ QˆpSUp2q,ρq R5

“ QˆpSUp2q,AdSUp3qq m.

(6.1.30)

We take tIi | i “ 6, 7, 8u to be a basis of sup2q and tIµ |µ “ 1, . . . , 5u to be a basis
of m, such that IA “ pIµ, Iiq is a basis of sup3q that is adapted to the splitting
sup3q “ sup2q‘m. By f C

AB we denote the structure constants of sup3q with respect
to this basis.
Thereby, we have arrived at the statement which will be key to the instanton con-
structions in this chapter.

Proposition 6.1.4: Let M6 be the φ-cone over a 5-manifold M5 with the following
data:

(1) M6 carries an SUp2q-structure Q and an SUp3q-structure P satisfying the
relations (5.1), as well as an SUp3q-structure P 1, which may differ from P.

(2) A P CpQq is an instanton for P 1.
(3) There is an N P Ω2pM6, TM6q such that for µ “ 1, . . . , 5 the local forms

βµ ^ β6 ´ 1
2 N

µ
νκ β

ν ^ βκ satisfy the instanton condition induced by P 1.
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(4) X P Ω1
horpP, sup3qqpSUp3q,AdSUp3qq has frame-independent components with re-

spect to sections of Q, i. e.

0 “
“

Ii, Xµ

‰

´ ρ˚pIiq
ν
µXν “

“

Ii, Xµ

‰

´ f ν
iµ Xν @ i “ 6, 7, 8, (6.1.31)

where, additionally, X6 “ 0, and the Xµ depend on the cone direction only.
(5) The local representations of the 2-form

N –
1
2 prsup2q

`

adpXq
˝
^ pXq

˘

P Ω2
horpP, sup3qqpSUp3q,AdSUp3qq (6.1.32)

satisfy the instanton condition induced by P 1. The components of N are given
by Nµν “ e˚N peµ, eνq for local sections e of Q.

Then, if X satisfies the equations
“

Xµ, Xν

‰

` T κµν Xκ ´N
κ
µν

`

LBrXκ ` T
ρ
6κ Xρ

˘

“ Nµν , (6.1.33)

Â`X P CpPq is an instanton for P 1.

Proof. Under the assumptions of the proposition, the field strength of Â`X is given
by (6.1.26). If A is an instanton itself, the first term in that equation satisfies the
instanton condition. Due to p3q, the second term satisfies that condition as well. All
that is left is to require the third term to be an instanton, which is true if (6.1.33)
and assumption p5q are satisfied.

A few comments are in order. First, note that for any Lie group G with Lie algebra
g one can show (cf. section 4.3)

rAdpgqpξ1q, Adpgqpξ2qs “ Adpgq
`

rξ1, ξ2s
˘

@ g P G, ξ1, ξ2 P g. (6.1.34)

This, together with the frame-independence of X with respect to Q, implies that
N satisfies the frame-independence condition for Q as well. With respect to local
coframes β adapted to Q its coefficients read

Nµν “
1
2 prsup2q

`

rXµ, Xνs
˘

b βµ ^ βν “
1
2 f

i
κλ Xκ

µ X
λ
ν Ii b β

µ ^ βν (6.1.35)

In principle, one could drop assumption p5q and just require the coefficients of the
last term in (6.1.26) to be the coefficients of an instanton. The problem is that upon
choosing Xµ : M6 Ñ m, the commutator rXµ, Xνs has components in sup2q as well
as in m. We try to cancel the contributions in m among the torsion and N -terms,
thus leaving the part in sup2q untouched. Therefore, we have to require that part to
satisfy the instanton condition, which is precisely property p5q of the proposition.
Finally, the first three assumptions are properties of the geometries we are dealing
with. In order to find new instanton solutions on a geometry with these properties,
we have to find a set X1, . . . , X5, which satisfy p4q, p5q and (6.1.33). This will be
the concern of the remainder of this chapter.
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6.2 Sasaki-Einstein Structures and the First Instantons

Let us now try to find geometries that satisfy the assumptions of proposition 6.1.4.
From our elaborations in chapter 5 we already know that the conical SUp3q 6-
manifolds constructed there satisfy the first assumption. This section is devoted to
assumption p2q, namely to finding a connection on an SUp2q-structure Q on M6,
which is an instanton for the SUp3q-structure P 1 that defines the geometry of M6.
Note that we do not require Q to be contained in that SUp3q-structure, as we clarify
at the end of this section.

The first part of this section consists of reproduction of results from [2], whose
combination with our findings in chapter 4 will enable us to find connections as
desired. In [2], the following notion is used:

Definition 6.2.1: Let MD be a manifold, and let µ, ν, ρ, λ run from 1 to D. Be
∇ a covariant derivative on TM stemming from a connection on F pTMq, and be
R P Ω2pM,EndpTMqq its field strength tensor. We say that R has the interchange
symmetry if

Rµν ρλ “ Rρλµν @µ, ν, ρ, λ “ 1, . . . , D. (6.2.1)

Let us explain the relevance of this property in the present context. Consider a
G-structure Q onM , and let β be an adapted coframe. On a connection on TM the
instanton condition (4.1.17) precisely requires the 2-form indices of R with respect
to β to represent a matrix in g Ă sopDq. However, if ∇ even stems from a connection
on Q Ă F pTMq, the second pair of indices of R yields a matrix in g, and, thus, the
interchange symmetry implies that the connection is an instanton. We highlight this
as

Lemma 6.2.2: Let Q be a G-structure on M and ∇ a covariant derivative on TM
stemming from a connection on Q.
If the field strength tensor of ∇ has the interchange symmetry, ∇ is an instanton
for Q in the sense of (4.1.17).

Therefore, it is desirable to find such connections on TM . Here the following propo-
sition taken from [2] is very helpful:

Proposition 6.2.3: Let ∇t stem from a connection on SOpM, gq, i. e. ∇t g “ 0 for
all t, with totally antisymmetric torsion 5gpT tq “ t P for some P P Ω3pMq and real
parameter t. Suppose that when t “ 1, P is parallel, that is, ∇1 P “ 0. Then R∇t

has the interchange symmetry for all t.
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Proof. See proposition 3.1 of [2].

We, hence, aim at finding connections on F pTMq compatible with the G-structure
Q and having totally antisymmetric, parallel torsion. We know that these will be
instantons for Q by proposition 6.2.3.

Let us come back to the special spaces constructed in chapter 5. Therefore, from
now on we again take a, b, . . . running from 1 to 4, µ, ν, . . . from 1 to 5 and µ̂, ν̂, . . .
from 1 to 6.
First, let us consider a Sasaki-Einstein 5-manifold M5 with SUp2q-structure Q. As
explained in [17], Sasaki-Einstein SUp2q-structures on 5-manifolds are defined by a
Killing spinor. From this spinor, all the defining sections of Q can be deduced [2].
It has been shown in that reference that one can construct a covariant derivative
∇P on TM with respect to which the Killing spinor is parallel. Thus, ∇P originates
from a connection ΓP on Q. The torsion of ΓP is given by [2, 12]

Ta “
3
4 Paµν β

µ ^ βν and T5 “ P5µν β
µ ^ βν , (6.2.2)

where we used
P – η ^ ω3. (6.2.3)

Thus, ΓP is a connection on Q, but it does not have totally antisymmetric torsion.
Note that, although this connection preserves the Sasakian structure of M5, it does
not coincide with the characteristic connection of a Sasakian manifold one could
have constructed from proposition 3.3.5 (see also [28]). The latter is a connection
belonging to the Up2q-structure that is the Sasakian structure, but fails to be an
SUp2q-connection on Q (cf. [2]).
Consider a deformation of the Sasaki-Einstein SUp2q-structure to another SUp2q-
structure Q%, which is defined by pη, %2 ωαq, where % P R` is taken to be constant.
We have already seen in section 4.3 that such deformations stem from transforma-
tions pβa, β5q ÞÑ p% βa, β5q. As % P R` is constant on M5, we directly see that
ΓP still preserves η and %2 ωα for α “ 1, 2, 3. Hence, ΓP is a connection on Q% for
all values of %. As this transformation changes the metric, it has an effect on the
Levi-Civita connection and thereby on the torsion of ΓP . It turns out that this is
completely antisymmetric and proportional to P for [2, 12]

% “ %0 “
2
?

3
. (6.2.4)

As ΓP preserves P , this totally antisymmetric torsion is parallel with respect to ΓP
in addition. Therefore, for this value of %, RΓP has the interchange symmetry due
to proposition 6.2.3 and, thus, ΓP is an instanton for Q%0 according to lemma 6.2.2.
Nevertheless, since we made use of the Sasaki-Einstein SUp2q-structure Q “ Q%“1
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in the constructions in chapter 5, we need to find instantons for Q, rather than Q%0 .
As we explained in section 4.2, the instanton condition (4.1.17) induced by Q is
equivalent to

˚ pη ^ FAq “ ´FA, (6.2.5)

whence locally

W pQq “ spanRtβ
14 ´ β23, β13 ` β24, β12 ´ β34u. (6.2.6)

As this bundle is invariant under βa ÞÑ % βa, we directly infer

W pQq “W pQ%q @ % P R`, (6.2.7)

which we have shown in a very abstract manner in section 4.3 already. This means
that ΓP is an instanton for all Q%, % P R`.
In summary, ΓP is a connection on the principal bundle Q of the Sasaki-Einstein
SUp2q-structure, and it satisfies the instanton condition induced by this structure.

We proceed to the extensions of the Sasaki-Einstein 5-manifolds to 6-dimensional
spaces. First, consider M5ˆI with the direct-product metric g “ g5 ` dr2. As we
argued in section 5.1, Q on M5 directly lifts to an SUp2q-structure Q̂ on M5ˆI.
Recall that we refer to this lift of the constant family Qr “ Q to M5ˆI as the
pushforward SUp2q-structure on M5ˆI. Furthermore, recall that

SUp2q ãÑ SOp5q ãÑ SOp6q, (6.2.8)

where SOp5q is embedded into SOp6q as upper-left block matrices. The adjoint
bundle AdpQ̂q consists of elements of the form rq, 1

2 σµν Ẽ
µνs, where

Ẽµν “

„

Eµν 0
0 0



P sop6q, (6.2.9)

with tEµν | 1 ď µ ă ν ď 5u the standard basis of sop5q as in section 4.1, and σµν is
such that 1

2 σµν Ẽ
µν P sup2q Ă sop6q. These components σµν are the same as for the

5-dimensional SUp2q-structure Q. Thus, the components of the 2-forms in W pQ̂q
are the same as in five dimensions as well, whence locally

W pQ̂q “ spanR
 

β14 ´ β23, β13 ` β24, β12 ´ β34(. (6.2.10)

Here the βµ̂ are coframes on M5ˆI adapted to the SUp2q-structure Q̂.
From this we infer that the lift of ΓP to the direct product M5ˆI (or the pullback
along the projection to the slices) is an instanton for Q̂. We denote the lift of ΓP
to the direct product again by ΓP . This lift is a connection on F pT pM5ˆIqq, but it
restricts to a connection on Q̂, i. e. ΓP P CpQ̂q.
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The procedure employed in chapter 5 then was to apply deformations to the push-
forward SUp2q-structure Q̂, just as considered in chapter 4. The deformations we
used in chapter 5 can in general be decomposed into two parts. First, there is a
transformation of the type

R : M5ˆI Ñ GLp6,Rq, Rpx, rq “
„

φpx, rq15
1



(6.2.11)

that changes the metric from the direct product metric to the φ-cone metric. Second,
we applied transformations

T : M5ˆI Ñ SOp6,Rq, (6.2.12)

which leave the metric invariant, but still deform the SUp2q-structure.
The deformations we employed in chapter 5 deformed the pushforward SUp2q-
structure Q̂ on M5ˆI into other SUp2q-structures Q1 “ RhQ. Therefore, proposi-
tion 4.3.1 tells us that the maps inducing these transformations satisfy

R, T : M5ˆI Ñ NGLp6,RqpSUp2qq. (6.2.13)

Furthermore, as R is proportional to the identity on β1, . . . , β5, we can infer that

ΦR : sopDq Ñ sopDq, µabE
ab ÞÑ Rai µabRbj Eij (6.2.14)

leaves the subspace sup2q Ă sop6q invariant. This does also hold true for T , as this
is SOp6q-valued (see proof of corollary 4.3.5). Corollary 4.3.5 then implies that all
these SUp2q-structures on M5ˆI define the same instantons, as

W pQq “W pQ1q (6.2.15)

for all these structures. Thus, the lift of ΓP to M5ˆI an instanton for all SUp2q-
structures Q1 such that pQ̂,Q1q satisfy the normal deformation property introduced
in definition 4.3.2. In particular, this holds true for all the SUp2q-structures that we
constructed in chapter 5.

Finally, we use proposition 5.1.1 to extend the SUp2q-structures considered above
to SUp3q-structures on CφpM5q. Recall that Q1 Ă P 1, whence

W pQ1q ĂW pP 1q. (6.2.16)

This implies

Proposition 6.2.4: ΓP is an instanton in the sense of (4.1.17) for all the SUp2q-
structures on M5ˆI obtained by lifting the Sasaki-Einstein SUp2q-structure of M5

to M5ˆI and applying normal deformations leading to new SUp2q-structures.
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6.2 Sasaki-Einstein Structures and the First Instantons

Moreover, ΓP is an instanton for all the SUp3q-structures constructed as extensions
of these SUp2q-structures by means of proposition 5.1.1.
In particular, this holds true for the SUp2q-structures and the SUp3q-structures on
CφpM

5q constructed in chapter 5.

Therefore, on all these spaces, together with ΓP , assumptions p1q and p2q of propo-
sition 6.1.4 are satisfied.

This is a good point to review and summarize the geometric structure that we are
concerned with. The frame bundle F pT pM5ˆIqq provides the geometric background,
whereM5 carries a Sasaki-Einstein SUp2q-structure. The embedding ofM5 induces
the pushforward SUp2q-structure Q (we drop the hat now). By proposition 5.1.1
we know that this is contained in an SUp3q-structure P. Furthermore, the lift of
the Sasaki-Einstein canonical connection to the direct product is a connection on
Q, i. e. ΓP P CpQq. This is equivalent to the fact that if e : U Ñ F pT pM5ˆIqq is a
local section of Q or, in other words, a local frame adapted to the SUp2q-structure
Q, then

e˚ΓP P Ω1`U, sup2q
˘

. (6.2.17)

We applied normal deformations to Q induced by h : M5ˆI Ñ NGLp6,RqpSUp2qq,
thus constructing a second SUp2q-structure Q1 “ RhQ from Q. It is important
to note that, in general, the restriction of ΓP to the principal subbundle Q1 of
F pT pM5ˆIqq is not a connection on Q1 (cf. section 2.2). To illustrate this, consider

Rh ˝ e : U Ñ Q1, x ÞÑ Rhpxq epxq, (6.2.18)

which is a local section of Q1 by construction. By the properties of connection
1-forms, we have

pRh ˝ eq
˚ΓP “ Adph´1q ˝ ΓP ` h˚µGLp6,Rq. (6.2.19)

As h is NGLp6,RqpSUp2qq-valued, the homogeneous term is still a locally defined
sup2q-valued 1-form on U . The inhomogeneous term, on the contrary, may take
values anywhere in the Lie algebra of the normalizer of SUp2q in GLp6,Rq. Hence,
in general, we can use ΓP as an sup2q-valued connection on Q only. In section 4.3
we constructed a bijection fQ,h from CpQq to CpQ1q, and we could apply it here in
order to obtain connections on Q1. The map fQ,h takes a particularly simple form
if h is constant, since in this case the inhomogeneous term is absent. In this case,
fQ,h is merely the identity and connections on Q are connections on Q1 as well. We
will encounter such a situation in section 6.6.
Another particularly interesting case arises if h is further restricted to take values
in the centralizer of SUp2q in GLp6,Rq, as we will consider in section 6.4.2.
Finally, Q1 extends to an SUp3q-structure as well. This is the SUp3q-structure that
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P

P 1

defines instantons

Q

Q1

Rh

W pQ1q “W pQqW pP 1q Ą

e

Rh ˝ e

ΓP sup2q-valued here

M5ˆI

π

F
`

T pM5ˆIq
˘

Figure 6.1.: Geometric structures on F
`

T pM5ˆIq
˘

we use for the geometry of M5ˆI and, in particular, to define the instanton condi-
tion. The choice of the gauge principal bundle is independent of the choice of the
SUp3q-structure. Nevertheless, we have to make sure that the sections eσ that we
used in section 6.1 are sections of the very same principal SUp2q-bundle which the
instanton we are going to extend is an connection on. This is necessary since we
explicitly used this property in the derivation of proposition 6.1.4, especially when
we compared the pullback of the connection form with the local components that
we used in the Maurer-Cartan identity. The latter have to be taken with respect
to the same frame that we used as a section to pull the connection form back with.
The geometric structures on the frame bundle of F pT pM5ˆIqq are illustrated in
figure 6.1.

We finish this section with a remark on instanton conditions on 6-manifolds with an
SUp3q-structure P defined by pg, ω,Ωq. As argued in section 4.2, the condition that
the 2-form part of FA takes values in W pPq is equivalent to ˚pω ^ FAq “ ´FA. A
straightforward computation shows that this in turn is equivalent to

Ω^ FA “ 0 and ω ^ ω ^ FA “ 0. (6.2.20)

Applying the exterior covariant differential to the first equation as well as using the
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Bianchi identity and Ω^ FA “ 0 implies

dΩ^ FA “
´

`

W`
1 ` iW

´
1
˘

ω ^ ω `
`

W`
2 ` iW

´
2
˘

^ ω
¯

^ FA “ 0. (6.2.21)

Therefore, solutions to (6.2.20) automatically satisfy
`

W`
2 ` iW

´
2
˘

^ ω ^ FA “ 0. (6.2.22)

On ordinary 2-forms σ P Ω2pMq, this looks like an additional constraint for W2 ‰ 0.
However, as for field strengths of connections there is the additional Bianchi identity,
this is just a consequence of the instanton condition (6.2.20). Differentiating the
second equation does not yield anything new, since both its sides are six-forms
already.
Nevertheless, we could weaken the instanton condition to the requirement

Ω^ FA “ 0, (6.2.23)

which would imply
´

`

W`
1 ` iW

´
1
˘

ω ^ ω `
`

W`
2 ` iW

´
2
˘

^ ω
¯

^ FA “ 0. (6.2.24)

We might then define a different instanton bundle by

ĂW pPq “
 

σ P Ω2pMq
ˇ

ˇΩ^σ “ 0,
`

pW`
1 ` iW

´
1 qω^ω`pW

`
2 ` iW

´
2 q^ω

˘

^σ “ 0
(

.

(6.2.25)
Generically, the imposition of ω ^ ω ^ FA “ 0 would be an additional constraint
on A and ĂW pPq ‰ W pPq. For W1 ‰ 0 and W2 “ 0 using (6.2.24) reproduces the
original instanton condition (4.1.17).

6.3 Instantons on Kähler-Torsion Sine-Cones

Having developed the background for certain constructions of instantons very gen-
erally in the previous two sections, we now consider the explicit case of the Kähler-
torsion sine-cones constructed in section 5.2.
Recall that we had

`

CφpM
5q, g

˘

“

´

M5ˆp0,Λπq, Λ2 sin
´ r

Λ

¯2
g5 ` dr2

¯

. (6.3.1)

For the metric we can compute

g “ Λ2 sin
´ r

Λ

¯2
g5 ` dr2 “ Λ2 sin

´ r

Λ

¯2
ˆ

g5 `
´ dr

Λ sinp rΛq

¯2
˙

“ Λ2 sin
´ r

Λ

¯2 ´

g5 `
`

dτprq
˘2
¯

,

(6.3.2)
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where

τprq “ log
ˆ

2Λ tan
´ r

2Λ

¯

˙

ô rpτq “ 2Λ arctan
´ eτ

2Λ

¯

. (6.3.3)

This implies that there exists a conformal equivalence

f : M5ˆp0,Λπq ÑM5ˆR, fpx, rq “ px, τprqq, (6.3.4)

between the sine-cone and the cylinder over M5. We push the SUp3q-structure on
the Kähler-torsion sine-cone forward to the cylinder along f and search for instantons
for this SUp3q-structure on the cylinder. Their pullbacks to the sine-cone will then
be instantons for the Kähler-torsion SUp3q-structure.

We aim at finding solutions to

˚ pω ^ FAq “ ´FA. (6.3.5)

Therefore, the instanton bundle on the cylinder can locally be written as

W pPq “ spanR
 

β14 ´ β23, β13 ` β24, β12 ´ β34, β15 ` β26,

β16 ´ β25, β35 ´ β46, β45 ` β36,
1
2 β

12 `
1
2 β

34 ´ β56(,
(6.3.6)

from which we deduce the non-vanishing components of N appearing in (6.1.26):

N5
ab “

1
2 η

3
ab and Na

5b “ ´η
3a
b. (6.3.7)

By the pushforward of the SUp3q-structure, these are the same on the sine-cone and
on the cylinder in the respective coframes. N is a globally well-defined tensor field,
for we can write it as

N “ ´
1
2 ξ b ω

3 ´ η ^ J, (6.3.8)

where ξ “ ´e5 is the vector field dual to η. Thus, all geometric assumptions of
proposition 6.1.4 are satisfied, and we are left to find suitable Xµ solving the re-
maining constraints and the matrix equations.
On the cylinder, ΓP is a connection living on the pushforward SUp2q-structure Q
and, in addition, an instanton for P. Note that we have to perform our compu-
tations in a frame adapted to the SUp2q-structure on the cylinder, as explained in
the previous section. That is, we use pushforwards of local frames adapted to the
SUp2q-structure on M5 to the cylinder, together with e6 “ Bτ . The non-vanishing
components of the torsion of ΓP with respect to such a frame on the cylinder are
just given by

T 5
ab “ 2P 5

ab “ ´2 η3
ab and T a5b “

3
2 P

a
5b “

3
2 η

3a
b. (6.3.9)
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6.3 Instantons on Kähler-Torsion Sine-Cones

Recall that the matrix equations on the Xµ read
“

Ii, Xµ

‰

“ f ν
iµ Xν ,

“

Xµ, Xν

‰

“ ´ T κµν Xκ `N
κ
µν

`

LBτXκ ` T
ρ
6κ Xρ

˘

`Nµν .
(6.3.10)

These have to hold for all i “ 6, 7, 8 and µ, ν “ 1, . . . , 5. Now we consider an ansatz
which locally is of the form

Γ “ ΓP `Xµ b β
µ. (6.3.11)

Substituting N , T and N , the matrix equations become
“

Ii, Xµ

‰

“ f ν
iµ Xν ,

“

X5, Xb

‰

“ ´
3
2 η

3a
bXa ´ η

3a
b

d
dτ Xa,

“

Xa, Xb

‰

“ 2 η3
abX5 `

1
2 η

3
ab

d
dτ X5 `Nab.

(6.3.12)

We have to make an ansatz for the Xµ. First, let us clarify which generators of sup3q
we are using here. We take the Killing-Cartan orthonormal basis from (3.4.11) and
rescale it as in (3.4.13) with the choice

γ “ ´
1
3 and δ “ ˘

1
2
?

3
, (6.3.13)

such that we obtain

T 5
ab “ ´2 η3

ab “ ´f
5

ab and T a5b “
3
2 η

3a
b “ ´f

a
5b . (6.3.14)

Then we employ the ansatz

Xapτq “ ψpτq Ia, X5pτq “ χpτq I5. (6.3.15)

ψ, χ : RÑ R are two real functions. From this we obtain

Nab “ ψ2 f i
ab Ii, (6.3.16)

which can be seen to satisfy the instanton condition from (3.4.11) and (6.3.6). More-
over, the frame-independence condition is satisfied, since

rIi, Xas “ ψ rIi, Ias “ ψ f b
ia Ib “ f b

ia Xb. (6.3.17)

Hence, all assumptions of proposition 6.1.4 are indeed satisfied, and we are left to
solve the matrix equations on the Xa. Upon inserting our ansatz they reduce to the
coupled system of non-linear, ordinary differential equations given by

9ψ “
3
2 ψ pχ´ 1q, 9χ “ 4 pψ2 ´ χq. (6.3.18)
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6 Construction of Instantons

Here we denoted the derivative with respect to τ by the dot. These equations co-
incide with those obtained in [2] for the case of the SUp3q-structure on the cone
over M5 pushed forward to the cylinder. This is not surprising as the two SUp3q-
structures induced on the cylinder by the conformal equivalences of the sine-cone
considered here and the cone considered in [2] coincide. In principle, we have repro-
duced the reduction of the instanton equations carried out in [2].
Solutions to the above differential equations are given for example by

`

χpτq, ψpτq
˘

“ p0, 0q, (6.3.19)
`

χpτq, ψpτq
˘

q “ p1,˘1q, (6.3.20)
`

χpτq, ψpτq
˘

“ pC expp´4 τq, 0q. (6.3.21)

Here, C P R is a constant of integration. The first solution corresponds to the un-
perturbed ΓP , which must occur as a solution for consistency because, as we know
already, ΓP is an instanton.
The solution pχ, ψq “ p1, 1q is shown to be the pullback to the cylinder of the
Levi-Civita connection of the metric cone in [2]. Since the metric cone over a
Sasaki-Einstein manifold is Calabi-Yau, it has holonomy SUp3q. Furthermore, the
Levi-Civita connection always has the interchange symmetry, and if it is compatible
with the SUp3q-structure, it thus is an instanton itself. Additionally, recall that the
Kähler-torsion SUp3q-structure on the sine-cone coincides with the pullback of the
Calabi-Yau structure from the metric cone. Therefore, as the instanton condition is
invariant under conformal transformations, the pullback of the Levi-Civita connec-
tion is an instanton on the Kähler-torsion sine cone.
The solution pχ, ψq “ p1,´1q reflects the fact that the defining sections of any
SUp2q-structure are invariant under flipping the signs of e1, . . . , e4 of all the bases
of the original structure. Therefore, carrying out the computation in these other
sections of the SUp2q-bundle Q, we would have obtained the same solution p1, 1q,
which expressed in the original basis reads pχ, ψq “ p1,´1q.
The gauge field configurations corresponding to the third solution solve the instan-
ton equation, but will not be of finite action due to the exponential factor, whence
they are of less physical interest.
Analytical solutions to the above differential equations on χ and ψ other than these
have neither been found in [2] nor in this work. For a slightly more extensive treat-
ment of this system including some remarks on numerical solutions, we refer the
reader to [2] and [39]. In the latter, Kähler-torsion sine-cones have been constructed
over Sasaki-Einstein manifolds of generic dimension. Furthermore, the instanton
solutions we found here have been shown to admit a generalization to arbitrary di-
mensions, as well.
Note that the solutions pχ, ψq “ p0, 0q, p1,˘1q correspond to constant Xµ. Hence,
they correspond to lifts of connections living on M5 to the cylinder, which are in-
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stantons for the SUp2q-structure on M5.
All these instantons are connections on a gauge bundle with gauge group SUp3q over
a 6-dimensional manifold, which carries a Killing spinor ε [12]. In particular, all of
the solutions we obtained satisfy

γpFAqpεq “ 0. (6.3.22)

For this reason, they may well be valuable starting points for the construction of
solutions to the heterotic supergravity equations (1.3.5) on spaces with conical sin-
gularities. Finding such solutions to the instanton equations has been the first step
towards the heterotic supergravity configurations found in [2–4].

6.4 Instantons on Nearly Kähler Sine-Cones

6.4.1 Reduction for Pushforward SU(2)-Structure

We turn our attention to the nearly Kähler sine-cones of section 5.3. Here we
have W1 ‰ 0 and W2 “ 0 (see definition 3.1.5). Hence the weakened version of
the instanton condition coincides with the ordinary instanton condition (4.1.17) or,
equivalently, ˚pω ^ FAq “ ´FA.
As before, we denote the lift of the constant SUp2q-structure on M5 to M5ˆI by
Q, where I “ p0,Λπq. Coframes adapted to Q are denoted by βµ̂. Recall from the
constructions in sections 5.2 and 5.3 that, in order to obtain the nearly Kähler sine-
cone from this SUp2q-structure on M5ˆI, we have to employ two transformations.
We have to rescale the coframes with

R : M5ˆI Ñ GLp6,Rq, Rpx, rq “
„

Λ sin
`

r
Λ
˘

15
1



(6.4.1)

and to rotate them via

T : M5ˆI Ñ SOp6q, T px, rq “ exp
´ r

2Λ η2
¯

. (6.4.2)

We denote by βµ̂s the images of the βµ̂ under these transformations, such that all
the defining sections of the deformed SUp2q-structure Q1 “ RT ´1 R´1 Q take their
standard components with respect to βs. This does then hold true for the defining
sections of the nearly Kähler SUp3q-structure P 1 that Q1 extends to as well. There-
fore, N has precisely the same components (6.3.7) as in the previous case, but this
time with respect to the coframes βs. Again, N is globally well-defined.
The instanton which we perturb by X is the lift of ΓP to the direct product, just as
in the previous section. From section 6.2 we know that this will be an instanton for
the nearly Kähler SUp3q-structure on the sine-cone.
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However, since ΓP is sup2q-valued on Q rather than Q1, we have to perform com-
putations in the original coframes β (as explained in section 6.2, in particular see
figure 6.1). In the matrix equations (6.1.33) we, therefore, have to use the compo-
nents of the tensor field N with respect to the untransformed coframes β. These
read

Na
5b “ ´ Λ sin

´ r

Λ

¯´

cos
´ r

Λ

¯

η3a
b ` sin

´ r

Λ

¯

η1a
b

¯

,

N5
ab “

1
2 Λ sin

´ r

Λ

¯´

cos
´ r

Λ

¯

η3
ab ` sin

´ r

Λ

¯

η1
ab

¯

.

(6.4.3)

The torsion of ΓP has components as in (6.3.14) with respect to β. Employing the
reduction procedure of section 6.1 to an ansatz which locally reads

Γ “ ΓP `Xµ b β
µ, (6.4.4)

we arrive at the following matrix equations for the Xµ “ pe
˚Xqpeµq:

“

Ii, Xµ

‰

“ f ν
iµ Xν , (6.4.5)

“

X5, Xa

‰

“ ´
3
2 η

3b
aXb ´ Λ sin

´ r

Λ

¯´

cos
´ r

Λ

¯

η3a
b ` sin

´ r

Λ

¯

η1a
b

¯ d
drXb,

“

Xa, Xb

‰

“ 2 η3
abX5 `

1
2 Λ sin

´ r

Λ

¯´

cos
´ r

Λ

¯

η3
ab ` sin

´ r

Λ

¯

η1
ab

¯ d
drX5.

Note that in the large-volume limit Λ Ñ8, where the nearly Kähler SUp3q-structure
on the sine-cone approaches the Calabi-Yau SUp3q-structure on the metric cone over
M5, these equations smoothly tend to the equations that we would have obtained
by carrying out the reduction procedure starting from ΓP on the Calabi-Yau cone.
For the ansatz Xa “ ψ Ia and X5 “ χ I5 the only solutions are given by

pχ, ψq “ p0, 0q and pχ, ψq “ p1,˘1q. (6.4.6)

The gauge fields that these solutions correspond to are, of course, precisely the
same configurations as the ones obtained in the last section as instantons for the
Kähler-torsion SUp3q-structure. This is not surprising, for these gauge fields are
lifts of instantons on M5 to the direct product. Therefore, they are instantons for
the pushforward SUp2q-structure Q onM5ˆI. However, we explained in section 6.2
how all the normal deformations of Q that we considered in chapter 5 define the
same instantons, i. e. W pQq “ W pQ1q for these SUp2q-structures. Thus, the gauge
fields given by ΓP`ψ Iabβa`χ I5bβ

5 with pχ, ψq “ p0, 0q, p1,˘1q will be instantons
for all the SUp3q-structures constructed in chapter 5.

As we thus expect these solutions to arise in every situation where we try to extend
ΓP , the more interesting question is whether there are solutions apart from these.
In order to answer this question, we can pursue at least two different strategies.
First, we could try to employ more general ansätze for the Xµ, aiming to find
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solutions to the matrix equations that depend on the cone coordinate. Such solutions
will be obtained in section 6.5. Second, we could try to find other gauge bundles
than Q and P. In the case of the geometries at hand, we are given at least one
additional natural candidate, namely Q1 “ RhQ and its extension to a principal
SUp3q-bundle P 1. This strategy we will follow in the next subsections.

6.4.2 Canonical Connection of the Nearly Kähler Sine-Cone

The reason that we used the extension P of the pushforward SUp2q-structure Q
on M5ˆI as the gauge principal bundle was that we generically do not know an
instanton on any other bundle that we could try to extend. Although in section 4.3
we constructed a bijection between CpQq and CpQ1q for all normal deformations Q1
of Q, this map does, in general, not map instantons to instantons. Here, however, we
appear to be in a more special situation that allows us to circumvent this problem
by observing a simpler relation between CpQq and CpQ1q. The central element is the
following lemma:

Lemma 6.4.1: Let pB, π,M,Hq be a principal fiber bundle over M with a principal
G-subbundle pQ, π,M,Gq, and let pUσ, sσqσPΣ be an open covering of M by local
sections of B. Consider a map h : M Ñ CHpGq, x ÞÑ hpxq, where CHpGq Ă H is
the centralizer of G in H.
Then we have

(1) Q1 “ RhQ is a principal G-subbundle of B, and pUσ, Rh ˝ sσqσPΣ is an open
covering of M by local sections of Q1. Furthermore, the transition maps of the
coverings pUσ, sσqσPΣ and pUσ, Rh ˝ sσqσPΣ coincide.

(2) The family pUσ, h˚µHqσPΣ is the local representation of a globally well-defined
Ξ P Ω1

horpB, hq
pH,AdHq with respect to pUσ, Rh ˝ sσqσPΣ, i. e.

`

Rh ˝ sσ
˘˚ Ξ “ h˚µH , (6.4.7)

where µH is the Maurer-Cartan form on H.

Proof. Ad p1q: Since the centralizer of G in H is contained in the normalizer of G
in H, we know from proposition 4.3.1 that Q1 “ RhQ is a principal G-subbundle of
B.
Consider two local sections s, s1 : U Ñ Q of Q with s1 “ Rg ˝ s for some transition
map g : U Ñ G. Then we have

Rh ˝ s
1 “ Rh ˝Rg ˝ s “ Rh´1gh ˝Rh ˝ s “ Rg ˝ pRh ˝ sq. (6.4.8)

In the last identity we used that hpxq is central for G for all x PM . This shows p1q.
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Ad p2q: Since CHpGq Ă H is a Lie subgroup of H and h takes values in CHpGq

exclusively,
h˚µH “ h˚µCHpGq, (6.4.9)

where now µCHpGq is the Maurer-Cartan form on the Lie group CHpGq. Note that
µCHpGq takes values in LiepCHpGqq only, and that AdH restricted to G acts trivially
on this Lie subalgebra of h. Thus, for all g P G,

h˚µH “ h˚µCHpGq “ AdHpg
´1q ˝ h˚µCHpGq “ AdHpg

´1q ˝ h˚µH . (6.4.10)

Note that a family of local h-valued 1-forms Ξσ is a representation of some globally
defined Ξ P Ω1

horpB, hq
pH,AdHq with respect to pUσ, Rh ˝ sσqσPΣ if and only if [18]

Ξσ “ AdHpgσρ
´1q ˝ Ξρ (6.4.11)

for sσ “ Rgσρ ˝ sρ and σ, ρ P Σ.
We set

Ξσ “ h˚µH @σ P Σ. (6.4.12)

From p1q we know that Rh ˝ sσ “ Rgσρ ˝ pRh ˝ sρq, whence (6.4.10) implies

Ξσ “ h˚µH “ AdHpgσρ
´1q ˝ h˚µH

“ AdHpgσρ
´1q ˝ Ξρ. (6.4.13)

Therefore, there exists a globally well-defined Ξ P Ω1
horpB, hq

pH,AdHq satisfying

pRh ˝ sσq
˚ Ξ “ Ξσ “ h˚µH @σ P Σ, (6.4.14)

whence we have shown p2q.

Lemma 6.4.1 has the following important corollary:

Corollary 6.4.2: If in the above situation A P CpBq is a connection on B that
restricts to a connection on Q, then

Ã– A´ Ξ (6.4.15)

is a connection on B that restricts to a connection on Q1. Its local representation
with respect to Rh ˝ sσ is

pRh ˝ sσq
˚Ã “ sσ

˚A @σ P Σ, (6.4.16)

since h takes values in CHpGq, only. From this it follows that also the field strengths
have the same components with respect to Sσ and Rh ˝ sσ,

pRh ˝ sσq
˚F Ã “ sσ

˚FA @σ P Σ. (6.4.17)
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Proof. The statement that Ã is a connection on B is a direct consequence of the
fact that the inhomogeneous terms dropped in (6.4.16) are the local representations
of the globally well-defined form Ξ P Ω1

horpB, hq
pH,AdHq and that CpBq is an affine

vector space over Ω1
horpB, hq

pH,AdHq. As hpxq is central for G for all x P M and as
s˚A is g-valued, we also see from (6.4.16) that Ã is g-valued on Q1 and therefore
restricts to a connection on Q1.
We have

pRh ˝ sσq
˚Ã “ pRh ˝ sσq

˚pA´ Ξq

“ AdHph
´1q ˝ sσ

˚A` h˚µH ´ h
˚µH (6.4.18)

“ sσ
˚A. (6.4.19)

In the las equality we used that h is central for g. This directly implies

pRh ˝ sσq
˚F Ã “ sσ

˚FA @σ P Σ, (6.4.20)

thus completing the proof.

This yields a bijection from CpQq to CpQ1q, which may, in general, differ from the
one constructed in section 4.3. Due to the coinciding local representations of the
field strengths of Ã and A, this bijection even maps instantons to instantons.
One crucial application of this lemma to our situation is the following: Consider the
manifoldM5ˆI, where again I “ p0,Λπq. LetQ be the SUp2q-structure obtained as
the lift of the constant family given by just the Sasaki-Einstein SUp2q-structure on
M5 to M5ˆI in the sense of proposition 5.1.1. This is a principal SUp2q-subbundle
of the principal GLp6,Rq-bundle F pT pM5ˆIqq and we have the embeddings

SUp2q ãÑ SOp5q ãÑ SOp6q ãÑ GLp6,Rq. (6.4.21)

Now consider the two transformations defined by R and T as introduced in the
preceding subsection. The essential observation is that both are central for this
embedding of SUp2q into GLp6,Rq. Regarding R, this can be seen from the fact
that R is proportional to the identity on SOp5q. Further, ω2 “ 1

2 η
2
µν β

µ ^ βν is
invariant under SUp2q, as it is a defining section for the SUp2q-structure on M5.
Since T is generated by η2, it commutes with all of SUp2q as well.
By corollary 6.4.2 this implies that if pΓP qµν are the components of ΓP with respect
to β, then the same components taken with respect to βs “ pT ˝ Rqpβq define
a connection which is compatible with the rescaled and rotated SUp2q-structure
underlying the nearly Kähler SUp3q-structure. We denote this connection by Γsup2q.
Let us for a moment distinguish between components that are computed with respect
to β and βs, respectively, by endowing indices with respect to the former with a
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tilde. That is, for es “ Rh ˝ e we write β “ pβµ̃q and βs “ pβ
µ
s q. Then, the local

representation of Γsup2q with respect to es is given by

Γsup2q
µ
ν
“ pT ˝Rqµρ̃ pΓP q

ρ̃

λ̃
pR´1 ˝ T ´1qλ̃ν “ pΓP q

µ̃
ν̃ . (6.4.22)

By construction it is a connection on the principal bundle Q1.

Even more, we know that on every nearly Kähler manifold there exists a connection
preserving the SUpnq structure, namely the Bismut connection, or the canonical con-
nection, of the nearly Kähler structure, which we already encountered in section 3.1.
We will denote this connection by Γsup3q. Having anticipated the existence of this
connection, we now compute its connection 1-form by means of the Maurer-Cartan
identity. We have

dβas “ d
`

pT ˝Rqa
b̃
β b̃
˘

“ dpT ˝Rqa
b̃
^ β b̃ ` pT ˝Rqa

b̃
dβ b̃

“ d
´

Λ sin
´ r

Λ

¯

exp
´ r

2Λ η2
¯a

b̃

¯

^ β b̃

` pT ˝Rqa
b̃

´

´ pΓP qb̃c̃ ^ β c̃ ` T b̃
¯

“
1
Λ

´

cot
´ r

Λ

¯

δab `
1
2 η

2a
b

¯

dr ^ βbs

´ pT ˝Rqa
b̃
pΓP qb̃c̃ pR´1 ˝ T ´1qc̃d ^ β

d
s (6.4.23)

`

´ 3
2Λ cot

´ r

Λ

¯

η3a
b ´

3
2Λ η1a

b

¯

β5
s ^ β

a
s

“ ´ Γsup2q
a
b
^ βbs ´

1
Λ cot

´ r

Λ

¯´

βas ^ β
6
s ` η

3a
b β

b
s ^ β

5
s

¯

´
1

2Λ cot
´ r

Λ

¯

η3a
b β

b
s ^ β

5
s `

1
Λ η1a

b β
b
s ^ β

5
s

´
1

2Λ

´

η2a
b β

b
s ^ β

6
s ´ η

1a
b β

b
s ^ β

5
s

¯

,

as well as

dβ5
s “ d

´

Λ sin
´ r

Λ

¯

β5̃
¯

“
1
Λ cot

´ r

Λ

¯

β6
s ^ β

5
s ´ Λ sin

´ r

Λ

¯

η3
ab β

a
s ^ β

b
s (6.4.24)

“ ´
1
Λ cot

´ r

Λ

¯´

β5
s ^ β

6
s ` η

3
ab β

a
s ^ β

b
s

¯

`
1
Λ η1

ab β
a
s ^ β

b
s,

and

dβ6
s “ d2r “ 0. (6.4.25)
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6.4 Instantons on Nearly Kähler Sine-Cones

Introducing the complex coframes

θ1
s “ β1

s ` i β
2
s , θ2

s “ β3
s ` i β

4
s , θ3

s “ i pβ5
s ` i β

6
s q (6.4.26)

and ϕ– r
Λ , this yields

d

¨

˝

θ1
s

θ2
s

θ3
s

˛

‚“´

»

—

–

Γ̂sup2q
1
1 `

i cotpϕq
2Λ β5

s Γ̂sup2q
1
2 ´

cotpϕq
Λ θ1

s ´
1

2Λθ
2̄
s

Γ̂sup2q
2
1 Γ̂sup2q

2
2 `

i cotpϕq
2Λ β5

s ´
cotpϕq

Λ θ2
s `

1
2Λθ

1̄
s

cotpϕq
Λ θ1̄

s `
1

2Λθ
2
s

cotpϕq
Λ θ2̄

s ´
1

2Λθ
1
s ´

i cotpϕq
Λ β5

s

fi

ffi

fl

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

canonical sup3q-connection Γsup3q on the nearly Kähler sine-cone

^

¨

˝

θ1
s

θ2
s

θ3
s

˛

‚

´
1
Λ

¨

˚

˝

θ2̄
s ^ θ

3̄
s

θ3̄
s ^ θ

1̄
s

θ1̄
s ^ θ

2̄
s

˛

‹

‚

loooooooomoooooooon

NK-torsion T̂

. (6.4.27)

We put a hat over the components of a connection to indicate its representation
with respect to the complex basis θ, rather than the real basis β.
First, note that, upon complex conjugation, the matrix of 1-forms in the first line is
mapped to minus itself, whence it is from sup3q as it is necessary for a connection
on P 1. However, from corollary 6.4.2 we only know that Γsup2q is a well-defined
connection. That this also holds true for Γsup3q becomes clear if we isolate the
1-form part and decompose it into the real basis, thus giving

Γ̂sup3q “ Γ̂sup2q `Bµ b β
µ
s , (6.4.28)

where

B1 “
1

2Λ

»

–

0 0 ´2 cotpϕq
0 0 1

2 cotpϕq ´1 0

fi

fl , B2 “
i

2Λ

»

–

0 0 ´2 cotpϕq
0 0 ´1

´2 cotpϕq ´1 0

fi

fl

B3 “
1

2Λ

»

–

0 0 ´1
0 0 ´2 cotpϕq
1 2 cotpϕq 0

fi

fl , B4 “
i

2Λ

»

–

0 0 1
0 0 ´2 cotpϕq
1 ´2 cotpϕq 0

fi

fl

B5 “
i

2Λ

»

–

cotpϕq 0 0
0 cotpϕq 0
0 0 ´2 cotpϕq

fi

fl . (6.4.29)

Here one can check that the Bµ satisfy the frame-independence condition (6.1.12),
whence Bµbβµs is the local representation of some B P Ω1

horpP, sup3qqpSUp3q,AdSUp3qq.
Therefore, Γsup3q is a well-defined connection on P 1, and we have

Γsup3q “ Γsup2q `B P CpP 1q. (6.4.30)
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P

P 1

Q

Q1

Rh

e

es “ Rh ˝ e

ΓP sup2q-valued here

Γsup2q “ ΓP ´ Ξ sup2q-valued here
Γsup3q sup3q-valued here

M5ˆI

π

F
`

T pM5ˆIq
˘

Figure 6.2.: Geometric structures on F
`

T pM5ˆIq
˘

for nearly Kähler sine-cone

From (6.4.27) we see that the torsion of Γsup3q is totally antisymmetric. Thus, we
found a connection that preserves the nearly Kähler SUp3q-structure and has to-
tally antisymmetric torsion. Due the uniqueness of such a connection [27, 28], this
must then coincide with the canonical, or Bismut, connection of the nearly Kähler
structure.
In fact, one can derive these explicit results without using the general statements
of lemma 6.4.1 and its corollary 6.4.2. This route is taken in [40]. There we com-
pute (6.4.27) without previously checking Γsup3q or Γsup2q to be a well-defined con-
nection. We then observe that the torsion in (6.4.27) is invariant under SUp3q and,
in particular, that it transforms as a tensor. The Maurer-Cartan identity implies
that Γsup3q is a well-defined connection, and, finally, the frame-independence of the
Bµ yields that Γsup2q is a well-defined connection as well.
The torsion in (6.4.27) is invariant under SUp3q and, therefore, parallel with respect
to Γsup3q. As it is, in addition, totally antisymmetric, we infer from proposition 6.2.3
that Γsup3q is an instanton on the nearly Kähler sine-cone over a Sasaki-Einstein
5-manifold. We again illustrate the geometric setup on F pT pM5ˆIqq, see figure 6.2.

We, thus, have seen an application of lemma 6.4.1 that allows us to construct con-
nections on SUp2q-structures other than the pushforward SUp2q-structure Q very
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6.4 Instantons on Nearly Kähler Sine-Cones

easily. In the above case,

prsup2q

´

dpT ˝Rq pT ˝Rq´1
¯

“
1
Λ

´

cot
´ r

Λ

¯

δab `
1
2 η

2a
b

¯

dr “ 0, (6.4.31)

whence Γsup2q coincides with the connection on Q1 that we would have obtained upon
application of proposition 4.3.3.
The particular example of Γsup2q considered in this subsection is a connection living
on Q1, such that it preserves this deformed SUp2q-structure. Therefore, it will be
compatible with its ambient nearly Kähler SUp3q-structure P 1 as well, and so will
be all of the extensions of Γsup2q to sup3q-connections living on P 1. In particular, this
holds true for the extensions of Γsup2q that we would use in the reduction procedure.
Note that in the cone limit Λ Ñ 8, the torsion in (6.4.27) tends to zero, such that
Γsup3q approaches the Levi-Civita connection of the Calabi-Yau metric cone overM5.

From a string theoretic point of view, the canonical connection of the nearly Kähler
structures might be of interest, as it might serve as the connection ∇` (cf. equa-
tion (1.3.1)) in explicit model building. Being a connection on the SUp3q-structure
principal bundle P 1, it even preserves the Killing spinor which defines P 1, wherefore
Γsup3q already yields solutions to the first and the third equation in (1.3.1).

6.4.3 Reduction for Deformed SU(2)-Structure

In the last subsection, we constructed a connection Γsup2q on the SUp2q-structure Q1
This is the SUp2q-structure that extends to the nearly Kähler SUp3q-structure on
the sine-cone over the Sasaki-Einstein M5. From corollary 6.4.2 we know that the
local representations of its field strength with respect to the βs coincide with the
local representations of the field strength of ΓP expressed in the respective β. Now,
since ΓP is an instanton on the nearly Kähler sine-cone, so is Γsup2q.
Hence, the efforts of section 6.4.2 led to two additional explicit instantons for these
nearly Kähler spaces. The canonical connection of the nearly Kähler structure has
already been known, and has been known to be an instanton for this structure (see
e. g. [2]). In contrast, Γsup2q exists due to the very special geometry of the nearly
Kähler sine-cone and appears to have been unknown previously.

We would like to revisit the reduction procedure for the instanton equations intro-
duced in proposition 6.1.4. In section 6.4.1, we obtained instanton solutions on the
nearly Kähler sine-cones using ΓP . However, these were just the extensions of ΓP
found in section 6.3 already, and we argued that these extensions of ΓP will be so-
lutions in all the cases we consider here.
Nevertheless, we can also use Γsup2q in this procedure, i. e. try an ansatz of the form

Γ “ Γsup2q `Xµ b β
µ
s . (6.4.32)
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Note that we have to use local frames that are sections of Q1 now, in order that
the formulas derived in section 6.1 apply directly. That is, we have to carry out the
component computations with respect to βs.
By the decomposition (6.4.28) and the fact that the Bµ satisfy the condition for
frame-independence, we even are provided with an ansatz for the Bµ that we know
will lead to non-trivial solutions of the resulting matrix equations.
First, we compute the torsion Tsup2q of Γsup2q. We again indicate components that
are taken with respect to the untransformed frames by a tilde over the respective
indices. The Maurer-Cartan identity yields

dβµs “ d
`

pT ˝Rqµν̃ β
ν̃
˘

“ dpT ˝Rqµν̃ ^ βν̃ ` pT ˝Rq
µ
ν̃ dβν̃

“ d
´

Λ sin
´ r

Λ

¯

exp
´ r

2Λ η2
¯µ

ν̃

¯

^ βν̃ (6.4.33)

` pT ˝Rqµν̃
´

´ pΓP qν̃ρ̃ ^ βρ̃ ` T ν̃
¯

“ ´ Γsup2q
µ
ν
^ βνs `

ˆ

1
Λ

´

cot
´ r

Λ

¯

δµν `
1
2 η

2µ
ν

¯

dr ^ βνs ` Tµ
˙

.

Thus, if we express both Tsup2q and T with respect to βs, we obtain

Tsup2q
µ
νρ
“ Tµνρ , Tsup2q

6
νρ
“ 0, Tsup2q

6
6ρ “ 0,

Tsup2q
µ

6ρ “
1
Λ

´

cot
´ r

Λ

¯

δµρ `
1
2 η

2µ
ρ

¯

.
(6.4.34)

As we are still considering the same nearly Kähler SUp3q-structure as in section 6.4.1,
the components of N are unaltered, and the general matrix equations for the per-
turbation X take the form
“

Ii, Xµ

‰

“ f ν
iµ Xν ,

“

Xa, Xb

‰

“
1

2Λ η3
ab

ˆ

5 cot
´ r

Λ

¯

X5 ` Λ d
drX5

˙

´
2
Λ η1

abX5 `Nab, (6.4.35)

“

X5, Xa

‰

“ ´
1

2Λ η3b
a

ˆ

5 cot
´ r

Λ

¯

Xb ` 2Λ d
drXb

˙

`
3

2Λ η1b
aXb ´

1
2Λ η3b

a η
2c
bXc.

Now we have already seen that the Bµ satisfy the first of these equations. This will
still hold true for the choice

Xapϕq “ ψpϕqBapϕq and X5pϕq “ χpϕqB5pϕq, (6.4.36)

where we again make use of ϕ– r
Λ . As one can check, the matrices Xµ yield

Nµν “ ´ψpϕq2
1` 4 cotpϕq

4 Λ2 f i
µν Ii, (6.4.37)
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6.4 Instantons on Nearly Kähler Sine-Cones

whence, for this choice of the Xµ, the 2-form part of N takes values in the instanton
bundle W pP 1q only, just as desired. Inserting this ansatz for the Xµ into the matrix
equations (6.4.35), we obtain, amongst certain differential equations, the algebraic
constraint identity

cotpϕq
Λ2

`

ψ2pϕq ´ χpϕq
˘

“ 0, (6.4.38)

which reduces the differential equations to

9χpϕq “ 9ψpϕq “ 0 and ψpϕq
`

ψpϕq2 ´ 1
˘

“ 0. (6.4.39)

Here the dot denotes the derivative with respect to ϕ. The solutions to this system
of equations are read off to be

pψ, χq “ p0, 0q, (6.4.40)

pψ, χq “ p1, 1q, (6.4.41)

pψ, χq “ p´1, 1q. (6.4.42)

First, pψ, χq “ p0, 0q just reproduces Γsup2q. This solution must occur for consistency,
since Γsup2q was an instanton already.
Second, pψ, χq “ p1, 1q reproduces the sup3q-valued instanton Γsup3q of section 6.4.2.
Consequently, we could have found this canonical connection of the nearly Kähler
SUp3q-structure P 1 as an instanton extension of Γsup2q. This yields a fundamentally
different proof that Γsup3q is an instanton for P 1, without employing proposition 6.2.3,
but using the much more explicit methods developed in section 6.1.
Third, the solution pψ, χq “ p´1, 1q realizes another instanton on the nearly Kähler
sine-cones we are considering. This, however, again arises due to the reflection
symmetry in the βas , which we had discussed in section 6.3 already.
Furthermore, note that if we express Γsup2q with respect to β, it still has non-trivial
components in the cone-direction, whence it is not a lift of a connection on M5.
That is, the connections we consider here really live on CsinpM

5q rather than M5.
This is because Q1 is a principal bundle that is not a pullback of a principal bundle
over M5. Generically, the right-action of h does not commute with the right-action
of SUp2q, but here h takes values in the centralizer of SUp2q. Therefore, Q and Q1
are isomorphic as principal bundles in the case at hand. Note that the map between
connections on Q and on Q1 constructed in lemma 6.4.1 and its corollary 6.4.2
is merely the pullback of connection 1-forms along this isomorphism of principal
bundles. Nevertheless, the isomorphism stems from M5ˆI rather than M5, whence
the gauge field configurations really live on the 6-dimensional space.
The instantons we constructed here are isolated in the sense that none of them
interpolates between two different solutions. In the limit Λ Ñ8, however, the strong
algebraic constraint (6.4.38) becomes trivial. Hence, we might expect that there is
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a richer space of solutions to the differential equations which the matrix equations
reduce to in this limit. In particular, instanton solutions which interpolate between
the instantons constructed from constant ψ and χ could be expected to occur.

Again, all of the above solutions are connections on a principal SUp3q-bundle which
is defined by a Killing spinor. The gauge field configurations constructed here solve

γpFAqpεq “ 0, (6.4.43)

since we know that they satisfy the instanton condition in the sense of (4.1.17).
Hence, all of them could prove useful in constructions of solutions to the field equa-
tions of heterotic supergravity (1.3.5) on spaces with conical singularities.

6.5 Interrelations and the Large-Volume Limit

Here we clarify the interrelations between the structures that we encountered on the
since-cone over M5. This will lead to a better understanding of the large-volume
limit Λ Ñ 8. Additionally, we observe a relation between instanton extensions of
ΓP and Γsup2q on the nearly Kähler sine-cone that allows us to infer new solutions
for both cases directly.

Let us once more consider the Kähler-torsion SUp3q-structure sine-cones over a
Sasaki-Einstein 5-manifold as investigated in sections 5.2 and 6.3. There are several
SUp2q- and SUp3q-structures that we encountered in this situation. First, there is
the pushforward SUp2q-structure Q on M5ˆI, where I “ p0,Λπq. This is the lift
of the constant family of SUp2q-structures consisting solely of the Sasaki-Einstein
structure of M5 to M5ˆI. Let U Ă M5 be an open subset, and let e : UˆI Ñ Q
be a local section of the principal fiber bundle Q. With respect to this frame, the
sine-cone metric reads

gsin “ Λ2 sin
´ r

Λ

¯2
g5 ` dr2 “ Λ2 sin

´ r

Λ

¯2
δµν β

µ b βν ` β6 b β6. (6.5.1)

Recall that the lift of ΓP to the direct product M5ˆI is a connection on Q, i. e.

ΓP P CpQq. (6.5.2)

We also considered the cylinder M5ˆR. Here proposition 5.1.1 applies as well, and,
therefore, we can lift the Sasaki-Einstein SUp2q-structure as a constant family to
M5ˆR, too. This SUp2q-structure we call QZ . The lift of ΓP to the direct product
M5ˆR is a connection on QZ in complete analogy with the previous case. In order
to distinguish the lifts to these two spaces, we denote the lift of ΓP to the cylinder
by ΓPZ . That is,

ΓPZ P CpQZq. (6.5.3)
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We then deformed the pushforward SUp2q-structure Q on M5ˆI by means of a
right-action on F pT pM5ˆIqq induced by R as in (6.4.1). The image of this map we
called Q1 “ RR´1 Q, and this was the SUp2q-structure underlying the Kähler-torsion
SUp3q-structure. Moreover, this transformation maps e to a frame adapted to the
sine-cone metric, i. e. writing e1 “ RR´1 ˝ e we obtain

gsin “ δµ̂ν̂ β
1µ̂ b β1ν̂ . (6.5.4)

Making use of lemma 6.4.1 and corollary 6.4.2, we see that there exists a connection
on Q1 given by

e1˚Γsup2q “ e1˚ΓP ´ pR´1q˚µGLp6,Rq

“ e˚ΓP .
(6.5.5)

Furthermore, there is the conformal equivalence

f : M5ˆI ÑM5ˆR, px, rq ÞÑ pr, τprqq (6.5.6)

from the sine-cone to the cylinder over M5 (cf. equations (6.3.3) and (6.3.4)). If gZ
is the cylinder metric on M5ˆR, we have

f˚gZ “
1

Λ2 sinp rΛq2
gsin. (6.5.7)

Let eZ be a local section of QZ , i. e. a local frame on the cylinder adapted to the
pushforward SUp2q-structure, and let βZ be its dual coframe. Then,

f˚βµ̂Z “
1

Λ sinp rΛq
β1µ̂ — β̃µ̂, (6.5.8)

or, equivalently,
f˚pẽµ̂q– f˚

´

Λ sin
´ r

Λ

¯

e1µ̂

¯

“ eZ µ̂. (6.5.9)

The frames ẽ define yet another, intermediate, SUp2q-structure on M5. We denote
this new structure by rQ. Another way of viewing rQ is as

rQ “ pf´1q˚pQZq. (6.5.10)

Local frames adapted to rQ and Q1 are related by

e1µ̂ “
1

Λ sinp rΛq
ẽµ̂. (6.5.11)

In particular, defining

h : M5ˆI ÑM5ˆI, px, rq ÞÑ
1

Λ sinp rΛq
16 (6.5.12)
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we see that p rQ,Q1q satisfies the normal deformation property with respect to h.
Note that h is central for SUp2q and SUp3q in GLp6,Rq. Thus, the extensions rP
and P 1 of rQ and Q1, respectively, to SUp3q-structures satisfy the normal deformation
property with respect to h as well.
The conformal equivalence, as an isomorphism of the principal fiber bundles QZ and
rQ, allows us to pullback ΓPZ from the cylinder to the sine-cone. Thereby, we obtain
a connection on rQ that we denote by f˚ΓPZ . We have

ẽ˚pf˚ΓPZ q “ pf˚ẽq˚ΓPZ “ eZ
˚ΓPZ . (6.5.13)

As h takes values in CGLp6,RqpSUp2qq, we can apply lemma 6.4.1 and corollary 6.4.2
to f˚ΓPZ and h in order to obtain a connection rΓsup2q on Q1. The local representation
of this connection reads

e1˚rΓsup2q “ e1˚pf˚ΓPZ q ´ h˚µGLp6,Rq “ ẽ˚pf˚ΓPZ q “ eZ
˚ΓPZ . (6.5.14)

By construction, we can choose

e “ peM5 ,drq and eZ “ peM5 , dτq (6.5.15)

as local sections of Q on M5ˆI and QZ on M5ˆR, respectively, where eM5 is a
local frame on M5 adapted to the Sasaki-Einstein SUp2q-structure. With respect to
these sections, the lift of ΓP to the direct products satisfies

pe˚ΓP q|px,rq “ peM5
˚ΓP q|x “ peZ˚ΓPZ , q|px,τq @ r P I, τ P R (6.5.16)

whence the connections induced from Q and QZ on Q1 coincide, i. e.

Γsup2q “ rΓsup2q. (6.5.17)

Note that the pullback along f and the transformation induced by h are applicable
to connections on the SUp3q extensions of QZ and rQ as well, such that connections
on PZ induce connections on P 1.
The following diagram illustrates the interrelations between these geometric struc-
tures:

QZrQQ1Q

PZrPP 1P

f˚RhRR´1

f˚Rh

ιιιι

ΓPZf˚ΓPZΓsup2qΓP

CpPZqCp rPqCpP 1q 1:11:1
(6.5.18)
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Let us investigate the respective instanton conditions. The goal is to find instantons
for the Kähler-torsion SUp3q-structure P 1 on the sine-cone over M5. These are
defined via the instanton bundle W pP 1q Ă Λ2T ˚pM5ˆIq. As Rh is a rescaling of all
the elements of the local frames ẽ (and, therefore, takes values in the normalizers of
SUp3q as well as SUp2q in GLp6,Rq), we have

W pP 1q “W p rPq and W pQ1q “W p rQq. (6.5.19)

In section 6.3 we tried to find instantons for PZ on M5ˆR. Form PZ “ f˚ rP it
follows that

f˚pW pPZqq “W p rPq, (6.5.20)

whence the pullbacks of PZ-instantons via f˚, or, more precisely, via the isomor-
phism of principal fiber bundles that it induces, are instantons for rP and hence as
well for P 1.
In particular, assume that A “ ΓPZ `X, i. e. locally

eZ
˚A “ eZ

˚ΓPZ `Xµpτq b β
µ
Z , (6.5.21)

is an instanton solution on the cylinder over M5. In order to transport this solution
to Q1, we have to employ the pullback via f and rescale via h, obtaining a connection
A1 with the local representation

e1˚A1 “ ẽ˚
`

f˚pΓPZ `Xq
˘

´ h˚µGLp6,Rq

“ Γsup2q `

ˆ

1
Λ sinp rΛq

Xµ

`

τprq
˘

˙

b β1µ. (6.5.22)

Therefore, there is a direct one-to-one correspondence of solutions obtained in sec-
tion 6.3 on the cylinder and solutions that we would have obtained upon applying
the reduction procedure to Γsup2q directly on the sine-cone. Upon using an ansatz
A1 “ Γsup2q ` X with Xa “ ψprq Ia and X5 “ χprq I5 with respect to e1 on the
Kähler-torsion sine-cone we would, thus, have obtained the solutions

`

ψprq, χprq
˘

“ p0, 0q, (6.5.23)
`

ψprq, χprq
˘

“

ˆ

1
Λ sin

`

r
Λ
˘ ,

˘1
Λ sin

`

r
Λ
˘

˙

, (6.5.24)

`

ψprq, χprq
˘

“

ˆ

0,
C cot

`

r
2Λ
˘4

16Λ5 sin
`

r
Λ
˘

˙

, (6.5.25)

which are the transformations of the solutions (6.3.19). One can check, that these
are indeed solutions to the matrix equations one had obtained on the Kähler-torsion
sine-cone.
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In particular, in the large-volume limit Λ Ñ 8 this correspondence is preserved.
Therefore, the instanton extensions of Γsup2q on the sine-cone tend to the instantons
that one obtains on the Calabi-Yau metric cone by transporting the solutions in
section 6.3 from the cylinder to the cone directly.

On the nearly Kähler sine-cone, the definition of Γsup2q did not only include the
inhomogeneous term due to rescaling, but also the inhomogeneous term due to the
rotation (6.4.2). In the large-volume limit, the rotation as well as its inhomogeneous
contribution to Γsup2q approach zero, and Bµ Ñ

1
r Iµ. Hence, together with the

relations pointed out in this section, one sees that in this limit the constructions of
sections 6.3 and 6.4.3 coincide.
Another very interesting interrelation of the instanton extensions of connections on
the tangent bundle that are related as in lemma 6.4.1 is the following. Denote
the deformation that deforms Q into Q1 by h : M5ˆI Ñ NGLp6,RqpSUp2qq. The
computations leading to (6.4.34) show that if h “ hprq and Lprqpe6q “ e6, we will
have

Tsup2q
µ

6ν “ pdh
´1 hqµν (6.5.26)

(with respect to e1), while all other torsion components are unaltered, i. e. equal to
those of ΓP .
Recall that if e : U Ñ Q is a local section of Q, and e1 “ Rh ˝ e : U Ñ Q1 is a local
section of Q1, then

e1µ “ ρphqνµ eν “ hνµ eν (6.5.27)

and
β1µ “

`

ρ´1phq
˘ µ

ν
βν “ ph´1qµν β

ν . (6.5.28)

Further, recall that RΓP “ RΓsup2q and that N is a tensor.
Consider an extension of Γsup2q with local representation Xµ b β

1µ. We have

Xµ b β
1µ “ ph´1qµν Xµ b β

µ. (6.5.29)

Now we insert this into the reduced expression for the field strength of ΓP us-
ing (6.1.26). The crucial observation is that the inhomogeneous terms arising from
LBrh reproduce the additional components Tsup2qµ6ν , and the factors of h´1 yield the
transformations from the components with respect to e to those with respect to e1.
Explicitly, marking tensor components with respect to e1 be a prime,

LBr
`

ph´1qµν Xµ

˘

b

´

βν ^ β6 ´
1
2 N

ν
σκ β

σ ^ βκ
¯

“

´

`

LBrph´1qµν
˘

Xµ ` ph
´1qµν

`

LBr Xµ

˘

¯

b

´

βν ^ β6 ´
1
2 N

ν
σκ β

σ ^ βκ
¯

(6.5.30)

“

´

`

LBrph´1qµλ
˘

hλν Xµ ` LBr Xν

¯

b

´

β1ν ^ β16 ´
1
2 N

1ν
σκ β

1σ ^ β1κ
¯
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“

´

LBrXν ` T
1
sup2q

δ

6ν
Xδ

¯

b

´

β1ν ^ β16 ´
1
2 N

1ν
σκ β

1σ ^ β1κ
¯

,

and by the same calculation,

1
2

´

Tµνκ ph
´1qλµXλ `

“

ph´1qλν Xλ, ph
´1qσκXσ

‰

´Nµ
νκ LBr

`

ph´1qλµXλ

˘

¯

b βν ^ βκ (6.5.31)

“
1
2

´

T 1
µ
νκXµ `

“

Xν , Xκ

‰

´N 1
µ
νκ

`

LBrXµ ` T
1
sup2q

δ

6µ
Xδ

˘

¯

b β1ν ^ β1κ.

Thus, the local representations of the field strengths of ΓP ` ph´1qµν Xµ b β
µ with

respect to e coincides with that of Γsup2q`Xµb β
1µ with respect to e1. This implies

that there is a one-to-one correspondence between instanton extensions of ΓP and
Γsup2q. However, note that, although the local representations of the extensions
coincide, the 1-forms they correspond to live on different principal SUp3q-bundles
P and P 1. They satisfy

e˚X “ e1˚X 1 “ pRh ˝ eq
˚X 1 “ Adph´1q ˝ e˚X 1. (6.5.32)

Therefore, as long as h is not central for SUp3q,

X ‰ X 1 P Ω1
´

F
`

T pM5ˆIq
˘

, glp6,Rq
¯pGLp6,Rq,ρq

(6.5.33)

Yet, their local representations coincide and thereby yield a simple identification of
the instanton solutions.
Using this statement, we can deduce a solution to the system of matrix equations
that arose in the reduction procedure as applied to Γsup2q on the nearly Kähler sine-
cone. We simply take the local representations of the extensions X of ΓP from
section 6.4.1 and use them as local representatives of an extension of Γsup2q to P 1
rather than P. By the above considerations we know that on P 1 there exists an
instanton extension X 1 of Γsup2q with local representations with respect to e1 given
by

pe1˚X 1qpe1µq “ X 1µ “
`

R´1 T ´1˘ν
µ
pe˚Xqpeνq (6.5.34)

in the terminology of section 6.4.1. Indeed, direct insertion of

X1 “
ψprq

Λ sinp rΛq

ˆ

cos
´ r

2Λ

¯

I1 ´ sin
´ r

2Λ

¯

I3

˙

,

X2 “
ψprq

Λ sinp rΛq

ˆ

cos
´ r

2Λ

¯

I2 ` sin
´ r

2Λ

¯

I4

˙

,

X3 “
ψprq

Λ sinp rΛq

ˆ

cos
´ r

2Λ

¯

I3 ` sin
´ r

2Λ

¯

I1

˙

, (6.5.35)
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X4 “
ψprq

Λ sinp rΛq

ˆ

cos
´ r

2Λ

¯

I4 ´ sin
´ r

2Λ

¯

I2

˙

,

X5 “
ψprq

Λ sinp rΛq
I5

into the matrix equations (6.4.35) yields precisely the solutions
`

ψprq, χprq
˘

“ p0, 0q, p˘1, 1q (6.5.36)

in consistency with the results of section 6.4.1 and this section.
Conversely, the solutions for extensions of Γsup2q in section 6.4.3 translate to instan-
ton extensions of ΓP . These have to be taken with respect to the local frames e
adapted to Q. They read

X1 “ ψprq
´

cos
´ r

2Λ

¯3
I1 ´ sin

´ r

2Λ

¯3
I3

¯

,

X2 “ ψprq
´

cos
´ r

2Λ

¯3
I2 ` sin

´ r

2Λ

¯3
I4

¯

,

X3 “ ψprq
´

cos
´ r

2Λ

¯3
I3 ` sin

´ r

2Λ

¯3
I1

¯

, (6.5.37)

X4 “ ψprq
´

cos
´ r

2Λ

¯3
I4 ´ sin

´ r

2Λ

¯3
I2

¯

,

X5 “ χprq cos
´ r

Λ

¯

I5

and as well lead to the solutions
`

ψprq, χprq
˘

“ p0, 0q, p˘1, 1q. (6.5.38)

One can check that the corresponding Xµ satisfy the matrix equations 6.4.5. Note
that, although the functions that parametrize the ansatz are constant for these so-
lutions, the coefficients Xµ depend on r in a non-trivial manner.

Thus, if the deformation h is central, one can transfer the solutions for an instanton
perturbation to the deformed SUp2q-structure. Note that, while an instanton exten-
sion X may have constant local representations in the first case, its transformation
to an instanton extension on P 1 may have much more intricate coefficients, as the
above examples illustrate.

6.6 Instantons on Half-Flat Cylinders

To finish this chapter with, we turn our attention to the half-flat cylinders of sec-
tion 5.4. Recall from proposition 5.4.2 that

W´
2 “

4%2 ´ 3
3%

`

ω3
z ´ 2 dr ^ ηz

˘

, and W`
2 “ 0 (6.6.1)
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for these spaces. According to our considerations at the end of section 6.2, we
can now consider the instanton bundle to be either W pP 1q, defined by the ordinary
bundle construction as in chapter 4, or ĂW pP 1q as in (6.2.25), given by the requirement

Ω^ µ “ 0 (6.6.2)

and the derived equation

0 “ dΩ^ µ “
´

`

W`
1 ` iW

´
1
˘

ω ^ ω `
`

W`
2 ` iW

´
2
˘

^ ω
¯

^ µ

“ i
´3` 2%2

3% ω ^ ω `
4%2 ´ 3

3%
`

ω3
z ´ 2 dr ^ ηz

˘

^ ω
¯

^ µ (6.6.3)

“ i
´

2 % ω3
z ^ ω

3
z `

3
%
ω3
z ^ dr ^ ηz

¯

^ µ

“
3i
%

´4%2

3 µ56 ` µ12 ` µ34

¯

volg.

Thus, we have

ĂW pP 1q “ spanR

!

β14
z ´ β

23
z , β

13
z ` β

24
z , β

12
z ´ β

34
z , β

15
z ` β

26
z , β

16
z ´ β

25
z ,

β35
z ´ β

46
z , β

45
z ` β

36
z ,

1
2 β

12
z `

1
2 β

34
z ´

3
4%2 β

56
z

)

. (6.6.4)

Let us here consider this weaker version of the instanton condition, for it might allow
for more interesting solutions. Hence, with respect to the coframes βz,

N b
5a “ ´η

3b
a and N5

ab “
2 %2

3 η3
ab. (6.6.5)

These are the components of the global tensor field

N “ ´
2 %2

3 ξ b ω3 ´ η ^ J. (6.6.6)

Note that W2 vanishes for % “
?

3
2 , such that for this special value of % the instanton

bundle ĂW pPq coincides with W pPq, and the components of N become the same as
considered in the previous cases.
As in sections 6.3 and 6.4.1 we consider the lift of ΓP to the direct product M5ˆI.
We have seen in section 6.2 that this is an instanton for the SUp2q-structure Q1
underlying the half-flat SUp3q-structure on the cylinder. That is, the 2-form part of
RΓP lies inW pQ1q. This bundle is contained in ĂW pP 1q as we see from (6.2.6). Hence,
ΓP is an instanton for P 1, independently of which of the two notions of instantons
we use.

The canonical procedure would be to employ the reduction of the instanton equa-
tions to ΓP as a connection on Q and thus on its SUp3q extension P. However,
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P

P 1

Q

Q1

Rh

e

ez “ Rh ˝ e

ΓP sup2q-valued here

M5ˆI

π

F
`

T pM5ˆIq
˘

Figure 6.3.: Geometric structures on F
`

T pM5ˆIq
˘

for half-flat cylinder

performing the reduction and trying to find solutions to the Xµ “ pe˚Xqpeµq, we
only found the solutions of sections 6.3 and 6.4.1. As explained there, these are lifts
fromM5 toM5ˆI of instantons for the Sasaki-Einstein SUp2q-structure onM5 and,
therefore, have to be present here as well. Nevertheless, more sophisticated ansätze
might yield more interesting extensions of ΓP to P.
Here, as in section 6.4.2, it is valuable to take a closer look at the geometric construc-
tion of the half-flat SUp3q-structures P 1. From the introduction of these geometries
in section 5.4 we recall that the normal deformations used in their construction are
induced by constant maps h : M5ˆI Ñ NGLp6,RqpSUp2qq. This is crucial here due to
the following reason: Let e : U Ñ Q be a local section of Q. Then Rh ˝e : U Ñ Q1 is
a local section of Q1. Consider a connection A P CpQq on Q. This can be extended
to a connection on F pT pM5ˆIqq. As h is constant we have

pRh ˝ eq
˚A “ Ad

`

h´1˘ ˝ e˚A` h˚µGLp6,Rq “ Ad
`

h´1˘ ˝ e˚A, (6.6.7)

and as we know that h takes values in the normalizer of SUp2q in GLp6,Rq, we infer
that pRh ˝ eq˚A is sup2q-valued. Therefore, we can use ΓP as a connection not only
on Q, but also on Q1 and try to extend it to an sup3q-valued connection on P 1. Once
again, we illustrate the geometric situation, see figure 6.3.
Note that we have to perform the computations in the frames βz. To this end, we
will use an ansatz of the form

Γ “ ΓP `Xµ b β
µ
z . (6.6.8)
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Expressed in the coframes βz the torsion of ΓP reads:

T 5
ab “ 2% η1

ab and T b5a “ ´
3
2%η

1b
a. (6.6.9)

From this we obtain the matrix equations on X as follows:
“

Ii, Xµ

‰

“ f ν
iµ Xν ,

“

X5, Xa

‰

“
3
2% η

1b
aXb ` η

3 b
a

d
drXb, (6.6.10)

“

Xa, Xb

‰

“ ´ 2 % η1
abX5 `

2%2

3 η3
ab

d
drX5 `Nab.

As an explicit ansatz for the Xµ we consider

X1prq “ ψprq
`

cospϑq I1 ´ sinpϑq I3
˘

,

X3prq “ ψprq
`

cospϑq I3 ` sinpϑq I1
˘

,

X2prq “ ψprq
`

cospϑq I2 ` sinpϑq I4
˘

,

X4prq “ ψprq
`

cospϑq I4 ´ sinpϑq I2
˘

,

X5prq “ χprq I5,

(6.6.11)

introducing a constant parameter ϑ P r0, 2πs. One can check that the frame-
independence condition is satisfied for all ϑ P r0, 2πs and that the 2-form part of N
takes values in ĂW pP 1q exclusively. Explicitly, we have

Nµν “ ψprq2 f i
µν Ii. (6.6.12)

Thus, this is a valid ansatz for our reduction procedure for the instanton equations.
Inserting this ansatz into the matrix equations leads to

9χ “
3
%2 pcospϑq2 ´ sinpϑq2qψ2, (6.6.13)

χ “
2
%

cospϑq sinpϑqψ2 , (6.6.14)

cospϑq 9ψ “ ´
3
2ψ psinpϑq ´ % cospϑqχq , (6.6.15)

sinpϑq 9ψ “
3
2ψ pcospϑq ´ % sinpϑqχq . (6.6.16)

By the dot we abbreviate the derivative with respect to r.
As it turns out, the equations lead to contradictions except for ϑ “ π

4 ,
3π
4 . For

these values, we have 1?
2 “ cospϑq “ ˘ sinpϑq, and the first two equations yields
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9ψ “ 9χ “ 0, while the last two coincide.
Apart from the trivial solution, this reduced system admits the solutions

ϑ “
π

4 : ψ “ ˘1, χ “
1
%
, (6.6.17)

ϑ “
3π
4 : ψ “ ˘1, χ “ ´

1
%
. (6.6.18)

ΓP provided us with an instanton for the half-flat structure P 1 and even for the
underlying SUp2q-structure Q1. As the 2-form parts of their field strengths has van-
ishing 6-components, the above four instanton solutions are in fact even instantons
for the SUp2q-structure Q1. Therefore, by proposition 4.3.5, they also are instantons
for the unrotated SUp2q-structure Q on M5ˆI. Since the rotation (5.4.1) is con-
stant as well, the instanton solutions obtained here do neither depend on r, nor have
non-vanishing 6-components. Thus, these connections are pullbacks of connections
living on the principal SUp3q-bundle ιr˚P 1 over M5, where ιr is the embedding of
M5 into M5ˆI as the slice at cone parameter r P I. However, this means that
we found new instantons on the Sasaki-Einstein 5-manifold. Note that as X is an
Ad-equivariant 1-form on P 1, it can in general not be transported back to P via Rh,
since the adjoint action of h preserves SUp2q only, rather than SUp3q. Therefore,
although ΓP restricts to a connection on both Q and Q1, the extensions of ΓP to
connections on P 1 found here do not restrict to connections on P and vice versa.

ΓP is an instanton for both notions of the instanton condition mentioned before,
and so are the new solutions obtained here, because they can be seen as lifts of
instantons from M5. This may be of interest since the original version (4.1.17) of
the instanton condition is equivalent to

γpFAqpεq “ 0, (6.6.19)

where ε is the generalized Killing spinor defining the half-flat SUp3q-structure P 1 on
the cylinder. Recall that in section 5.4 we argued that I may be any open interval
in R, and that the geometric structure may be extended to the boundary of M5ˆI

smoothly. This also holds true for the solutions ΓP ` X which we constructed in
this section since they can be seen as living on every slice separately. Thus, we
have obtained instantons on smooth, compact, 6-dimensional manifolds with half-
flat SUp3q-structures. These, again, may well prove useful in string model building.
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Chapter 7

Conclusions and Outlook

This thesis was primarily concerned with G-structures and instantons. In proposi-
tion 4.3.1, we found a certain class of deformation that take G-structures to different
G-structures over the same manifold and with the same G. These were induced by
the right-action with maps h : M Ñ NGLpD,RqpGq taking values in the normalizer of
G in GLpD,Rq.
We provided a bijection from connections compatible with the original G-structure
to those preserving the deformed G-structure. Moreover, we classified the subset
of these deformations for which the instanton bundles of the original and the de-
formed G-structures coincide. Although this turned out to be very helpful in the
constructions of chapter 6, the investigation of these deformations of G-structures
is not completed.
For example, one could ask whether there are more general transformations leaving
the instanton bundle invariant, and whether the instanton bundle determines the G-
structure up to these transformations. The answer to the first question might be to
replace h by maps toNGLpD,RqpGq{pGˆGq, as pointwise left- and right-multiplication
of hpxq by elements of G does not change the image of RhQ and has no effect on
the instanton bundle.
However, the question for the generic structure of the instanton moduli space of
a G-structure appears to be much more intricate. Nevertheless, for classes of G-
structures with the same instanton bundle the instanton moduli spaces coincide.
The above considerations might provide a partial answer as to what these classes
are.

In chapter 5, we introduced a formalism to construct 6-dimensional SUp3q-structure
manifolds of topology M5ˆI from 5-dimensional manifolds M5, where M5 is en-
dowed with a one-parameter family of SUp2q-structures. We showed how the de-
formations of G-structures introduced in section 4.3 may be used to construct such
families of SUp2q-structures from a given SUp2q-structure, which we took to be
Sasaki-Einstein. We arrived at the same 6-dimensional spaces upon applying the
rotations as a family and lifting the result, as well as upon lifting the constant
SUp2q-structure followed by applying the rotation as a single transformation on
M5ˆI.
By this procedure, we constructed a Kähler-torsion SUp3q-structure on the sine-
cone over M5, which is conformally equivalent to the Calabi-Yau metric cone over
M5. Employing a certain rotation on this sine-cone, we transformed this SUp3q-
structure into the nearly Kähler structure on the sine-cone which had already been
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constructed in [24] by means of flow equations. Both of these geometries on the sine-
cone approach the Calabi-Yau metric cone over M5 in an appropriate large-volume
limit. Furthermore, we constructed a two-parameter family of half-flat structures
on cylinders utilizing another deformation of the constant lift of the Sasaki-Einstein
SUp2q-structure to M5ˆI. All of these spaces can be extended to compact coni-
folds, which are valuable candidates for internal spaces in string model building.
Therefore, this procedure might prove useful in producing candidates for internal
geometries in flux compactifications. They seem particularly useful for the construc-
tion of explicit solutions to several geometric equations, for they have a topologically
trivial direction without having too simple a geometry.

The constructions in chapter 6 illustrated how the geometry of these spaces may
be utilized in order to find solutions to geometric equations. Here we started with
a formal treatment of the reduction procedure introduced in [1] for the instanton
equations.
The results of section 4.3 enabled us to directly see that the lift of the canonical con-
nection on the Sasaki-Einstein manifolds toM5ˆI provides us with an instanton for
all the SUp3q-structures obtained before. From this we reproduced the instantons
that one would have obtained by pulling back the instantons found on the metric
cone in [2] along the conformal equivalence.
On the nearly Kähler space, employing the same ansatz as before we only found
constant perturbations of the lift of the Sasaki-Einstein canonical connection. Via
the results in section 4.3 we could infer that these solutions would be present for all
the geometries we constructed in chapter 5. We constructed the canonical connec-
tion for the nearly Kähler structure and proved it to be an instanton using methods
of [2]. This connection was in two different ways seen to split into an instanton for
the SUp2q-structure that underlies the nearly Kähler structure and a part that we
could use as an ansatz for a perturbation of this instanton. Here we could use the
reduction procedure to give an independent proof that the nearly Kähler canoni-
cal connection is an instanton and to find another solution. Although the matrices
which we used in the ansatz depended on the cone coordinate, the functions we used
to parametrize our ansatz turned out to be constant for the solutions. Thus, these
instantons appeared to be isolated in the sense that there are no additional solutions
interpolating between them.
However, we observed that there is a direct correspondence between instanton ex-
tensions in sections 6.4.1 and 6.4.3, and transferring the respective solutions we
obtained additional instanton extensions in both cases. These depend on the cone
coordinate non-trivially.
On the half-flat cylinders over M5 the instantons we found even turned out to stem
from M5 rather than the 6-dimensional space.
The methods of chapter 6 may well be generalized. One possibility would be to

114



7 Conclusions and Outlook

consider more general gauge bundles B that reduce to Q1 in the terminology of
section 6.1, as for example viable quiver bundles. It also seems plausible that there
are general statements similar to proposition 5.1.1 that construct G2-structures on
M6ˆI from families of SUp3q-structures on M6, and Spinp7q-structures on M7ˆI

from families of G2-structures on M7. Combining such statements with the results
of section 4.3 and section 6.1 might turn out to be as useful for constructing inter-
esting explicit geometries and instanton solutions on them as it turned out to be for
lifts of SUp2q-structures to SUp3q-structures.

It exceeded the scope of this work to employ the instantons we obtained in attempts
to solve the field equations of heterotic supergravity, i. e. to find vacuum solutions of
heterotic string theory by manners similar to those in [2–4]. Nevertheless, this could
prove very fruitful, as the 6-manifolds we constructed are endowed with a (general-
ized) Killing spinor, a three form, which could be used as flux, a set of instantons
and even a distinguished function r that might be useful in constructing the dilaton.
In particular, on the nearly Kähler sine-cone, the canonical connection could be a
valuable candidate for ∇`. The gauge field could then be taken to coincide with
this connection in the hope for simpler solutions, but one might as well try to use
the other instantons that we found here. This seems to be a promising application
of the findings of this thesis.
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Appendix A

Principal Fiber Bundles
and Connections

A.1 Principal Fiber Bundles and Associated Bundles

Principal fiber bundles and connections are the central foundations of the mathe-
matics used in this thesis. For this reason, we review the mathematical formalism of
principal fiber bundles, associated bundles and connections. Throughout this thesis,
we use the notation of [18], where all this formalism is presented beautifully. Thus,
this section is a very condensed summary of the first three chapters of [18]. Proofs
and details left out are to be found there or in other mathematics textbooks intro-
ducing the language of principal fiber bundles.

There are two crucial ingredients to this formalism, namely the notion of fiber bun-
dles over a manifold and that of an action of a Lie group on a manifold. We start
with the definition of a fiber bundle.

Definition A.1.1: A locally trivial fiber bundle (or just fiber bundle) is a
quadruple pE, π,M,F q with the following properties:

(1) E, F and M are smooth manifolds.
(2) π : E ÑM, e ÞÑ πpeq is a surjective submersion.
(3) There exists a family tpUi, φiquiPΛ, where the Ui provide an open covering of

M , and the φi are diffeomorphisms

φi : π´1pUiq Ñ Ui ˆ F, e ÞÑ φipeq (A.1.1)

that preserve the base point. That is,

prUi ˝ φi “ π|π´1pUiq. (A.1.2)

E is then called the total space of the fiber bundle, whereas F is called the typical
fiber of E. M is called the base manifold and the collection tpUi, φiquiPΛ is a bundle
atlas of E. Any map satisfying the third axiom of the definition is called a local
trivialization of E, since it diffeomorphically maps a subset of E to the trivial fiber
bundle U ˆ F .
Apart from the trivial example of direct products, vector bundles are a very impor-
tant class of fiber bundles. Here, the fiber F is a vector space, and the transition
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A Principal Fiber Bundles and Connections

maps between different local trivializations are linear automorphisms of this vector
space.
In the following example we introduce a fiber bundle which is important through-
out this text. It lies at the very fundamentals of the notion of a G-structure and
yields the motivation for the abstract construction of associated vector bundles to
be introduced later.

Example A.1.2: Consider a K-vector bundle E of rank k P N over a manifold M .
K may be R or C. Let us consider the set of bases of the fibers of E. They constitute
the frame bundle of E. It is defined as the disjoint union

F pEq “
ğ

xPM

 

ex “ pe1|x, . . . , ek|xq
ˇ

ˇ ex is a basis of Ex
(

. (A.1.3)

First, the prescription π : F pEq ÑM, πpexq– x yields a surjective map. If we fix a
basis ex of a fiber Ex, every other basis of Ex is related to ex by a unique GLpk,Kq
transformation. Thus, if ei is a local frame of E on some open subset Ui Ă M , we
may consider the map

φi : F pEq|Ui Ñ Ui ˆGLpk,Kq, e1i|x ÞÑ px,Bq, (A.1.4)

where B P GLpk,Kq is the unique matrix that induces the change of basis from ei|x
to e1i|x. That is,

e1i|x “ Bj
i ej|x. (A.1.5)

We can cover M by local frames of E. The induced transition maps between the φi
are smooth with respect to the standard differentiable structures on Ui ˆGLpk,Kq.
Thus, these maps induce a differentiable structure on F pEq and provide a bundle
atlas for F pEq. Therefore, this indeed is a locally trivial fiber bundle with typical
fiber GLpk,Kq.

On this bundle we can perform a global change of bases by acting on all possible
bases with the same B P GLpk,Kq. This defines a map

R :F pEq ˆGLpk,Kq Ñ F pEq,

pex, Bq ÞÑ RB ex “
`

Bj1
i1
ej1|x, . . . , B

jk
ik
ejk|x

˘

—
`

pRB eq1|x, . . . , pRB eqk|x
˘

.

(A.1.6)

Note that with this definition, RB˝RA “ RAB. This is a special case of a right-action
of a Lie group on a manifold, which we now define in general terms.

Definition A.1.3: Let G be a Lie group and P a manifold. A right-action of G
on P is a smooth map

R : P ˆGÑ P, pp, gq ÞÑ Rg p (A.1.7)
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A.1 Principal Fiber Bundles and Associated Bundles

that satisfies

(1) For every g P G, the map Rg : P Ñ P, p ÞÑ Rg p is a diffeomorphism on P.
(2) Ra ˝Rg “ Rga @ a, g P G.

A left-action of G on P is a smooth map

L : Gˆ P Ñ P, pg, pq ÞÑ Lg p (A.1.8)

that satisfies

(1) For every g P G the map Lg : P Ñ P, p ÞÑ Lg p is a diffeomorphism on P.
(2) La ˝ Lg “ Lag @ a, g P G.

Heuristically speaking, a right-action is a Lie group anti-homomorphism from G to
the group of diffeomorphisms on P. A left-action is a group homomorphism of these
groups.
Note that by introducing an inverse in the above example of a GLpk,Kq-action on
F pEq one obtains a left-action instead of a right-action. One calls a group action
simply transitive if for any p, q P P there exists a unique g P G such that Rg p “ q.

Also, the right-action of GLpk,Kq on F pEq maps points of one fiber to points in the
same fiber, i. e. it preserves the base point. Even more, given two particular points
in the same fiber, there is precisely one element of GLpk,Kq whose action maps the
one point to the other (namely the respective change of basis). Therefore, this right
action is simply transitive on the fibers of F pEq. This is the motivating example of
the following more abstract definition:

Definition A.1.4: A principal fiber bundle is a tuple pP, π,M,Gq having the
following properties:

(1) pP, π,M,Gq is a locally trivial fiber bundle, where the typical fiber G is a Lie
group.

(2) There is a right-action R : PˆGÑ P, pp, gq ÞÑ Rg p of G on P that is simply
transitive on the fibers of P, and that preserves base points, i. e.

π ˝Rg “ π @ g P G. (A.1.9)

(3) There exists a G-equivariant bundle atlas tpUi, φiquiPΛ for pP, π,M,Gq. That
is, for all p P P, g P G, i P Λ we may write

φippq “
`

πppq, ψippq
˘

, (A.1.10)

and this satisfies
φi ˝Rgppq “

`

πppq, rgpψippqq
˘

, (A.1.11)
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where r : GˆGÑ G, pa, gq ÞÑ rgpaq “ ag is the intrinsic right-multiplication
on the Lie group.

The frame bundle of a vector bundle provides an example of how every vector bundle
gives rise to a principal fiber bundle over the base space. However, this also works
in the opposite direction. We illustrate this using again the frame bundle F pEq of a
vector bundle E over M .

Example A.1.5: In the above example, we constructed F pEq from E by considering
bases of E at every point of M . Every such basis induces an isomorphism of vector
spaces

res : Kk Ñ Eπpeq, pv
1, . . . , vkq ÞÑ ei v

i. (A.1.12)

This is the natural way to construct a vector in E from a basis and linear coefficients,
namely by linear combination. Therefore, one could define an element of Ex to be
a tuple X “ pe, vq, where e P F pEqx and v P Kk.
This, however, is not a good definition, since the same element of Ex can be repre-
sented by several such tuples. The ambiguity is precisely the freedom in the choice
of a basis of the fiber. In particular, we have

X “ pe, vq

“ ei v
i

“ ek B
k
i pB

´1qij v
j (A.1.13)

“
`

RB e, ρpB
´1qpvq

˘

@B P GLpk,Kq,

where ρ is the standard representation of GLpk,Kq on Kk. All these tuples are a
decomposition of the same vector with respect to different bases of the fiber. Hence,
the correct notion of a vector in Ex is the entity of all these tuples. That is, vectors
in Ex are equivalence classes

re, vs “ rRB e, ρpB
´1qpvqs @B P GLpk,Kq. (A.1.14)

These are just all possible ways to decompose a given vector in arbitrary bases of
the fiber.

This concept of gluing vectors from bases and coefficients can be generalized to some
extent. We actually neither need the principal bundle to be a frame bundle, nor do
we need the structure group to be a matrix group, nor the fiber to be a vector space.
Nevertheless, the previous example illustrates and motivates the following definition:

Definition A.1.6: Let pP, π,M,Gq be a principal bundle over M , F a smooth
manifold and ρ : G ˆ F Ñ F, pg, vq ÞÑ ρpgqpvq a left-action of G on F . From this
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data one can construct the associated bundle

E “ P ˆpG,ρq F – pP ˆ F q{ „ , (A.1.15)

where

pp, vq „ pp1, v1q ô D g P G : pp1, v1q “
`

Rg p, ρpg
´1qpvq

˘

. (A.1.16)

As explained above, in the case of F being a k-dimensional K-vector space the
equivalence relation can be understood as to divide out precisely the ambiguity in
representing the same vector with respect do different bases. E can then be shown
to be a smooth K-vector bundle of rank k over M .
The link to the formalism of components, which is used in most physics communi-
cations, is given by the fiber isomorphism. Be p P Px and E as defined above. The
fiber isomorphism is the map

rps : F Ñ Ex, v ÞÑ rp, vs. (A.1.17)

The components, or the local representation, of an element X of Ex is then just
given by

v “ rps´1pXq P F. (A.1.18)

If γ P ΓpEq is a section of an associated bundle and s P ΓU pPq is a local section of
P over some U ĂM , the local representation of γ with respect to s is

v : U Ñ F, vpxq “ rspxqs´1pγxq, (A.1.19)

which is a map from U to the space F . In the other direction, every section γ P ΓpEq
is locally of the form

γx “ rspxq, vpxqs (A.1.20)

for some local section s of P and a locally defined map v : U Ñ F . For F “ V a
vector space, it is these locally defined maps with values in vector spaces that are
used commonly in the physics literature.

There is yet another view on sections of associated vector bundles. Let us again
assume we are given a section γ P ΓpEq, where E is a vector bundle associated to
pP, π,M,Gq via the G-representation ρ on V . We may ask ourselves the question
whether there is a map γ̂ : P Ñ V, p ÞÑ γ̂ppq such that the local representation of
γ with respect to any local section s P ΓU pPq coincides with the pullback of γ̂ by
s. This way, we could transform the complete geometry of sections of non-trivial
associated vector bundles to maps from P to certain vector spaces, which are easier
to handle.
As it turns out, this is possible not only for sections of E, but even for differential
forms on M with values in E. In order to formulate this assertion precisely, we first
need some further notions.
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Definition A.1.7: Let pP, π,M,Gq be a principal bundle and E “ P ˆpG,ρq V an
associated vector bundle. First, the collection of tangent spaces to the fibers of P is
a smooth vector-subbundle of TP. It is called the vertical tangent bundle T vP
of P. As π projects every fiber to its base point, we have

T vP “ kerpπ˚q Ă TP. (A.1.21)

Now, let ω P ΩkpP, V q be a k-form on P with values in the vector space V . We say
that ω is a horizontal k-form if it vanishes whenever one inserts a vertical vector.
We denote the set of horizontal V -valued k-forms on P by Ωk

horpP, V q.
Finally, we say that ω P ΩkpP, V q is of type ρ if

Rg
˚ ω “ ρpg´1q ˝ ω @ g P G, (A.1.22)

and we denote the set of V -valued k-forms of type ρ on P by ΩkpP, V qpG,ρq.

The complete geometry of E-valued differential forms on M is indeed encoded in
horizontal V -valued differential forms of type ρ on P, as the following proposition
states:

Proposition A.1.8: In the above situation, there is an isomorphism

Ψ : ΩkpM,Eq Ñ Ωk
horpP, V qpG,ρq, µ ÞÑ Ψpµq, (A.1.23)

where for any p in the fiber over x, i. e. with πppq “ x,

Ψpµqp “ rps´1 ˝ µx ˝ π˚|p “ rps
´1 ˝ pπ˚µqp . (A.1.24)

This implies that for a local section s P ΓU pPq we have

ps˚Ψpµqqx “ rspxqs´1 ˝ ppπ ˝ sq˚µq|spxq “ rspxqs
´1 ˝ µx, (A.1.25)

which is precisely the local representation of the bundle-valued form µ. Note that
for any local section s P ΓU pPq,

µ|x “ rspxqs ˝ ps
˚Ψpµqqx “

“

spxq, s˚Ψpµqx
‰

. (A.1.26)

This glues together the globally defined, bundle-valued form µ from the local pull-
backs of its pendant on P. We illustrate this in the following, final example of this
section.

Example A.1.9: Let us consider a vector field X P ΓpTMq “ Ω0pM,TMq. Recall
that TM “ F pTMq ˆpGLpD,Rq,ρq RD with the standard representation of GLpD,Rq
on RD, and that the elements of F pTMq are the bases of the fibers of TM .
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A.1 Principal Fiber Bundles and Associated Bundles

The fiber isomorphism induced by a given basis is just the decomposition of a vector
with respect to that basis. That is, if e P ΓU pF pTMqq a local frame of TM , the
local representation of X can be read off from

Xx “ Xµpxq eµ|x “
“

epxq, pX1pxq, . . . , XDpxqq
‰

@x P U. (A.1.27)

Further, since X P Ω0pM,TMq, by the above proposition there exists a pendant
of X on F pTMq, which we denote by ΨpXq P Ω0

horpF pTMq,RDqpGLpD,Rq,R
Dq. It is

constructed such that its pullback along e : U Ñ F pTMq gives precisely the same
local representation

pe˚ΨpXqqx “
`

X1pxq, . . . , XDpxq
˘

@x P U. (A.1.28)

Thus, one may carry out local calculations completely with the local representations
pX1, . . . , XDq : U Ñ RD, but one has to keep in mind that these still have to form
globally well-defined objects. That is, the local representations depend on the choice
of local sections of principal bundles, and this has to be accounted for carefully.
Usually, this is just the transformation behavior of tensor components, but in the
main text we will encounter an example where this leads to a more complex interplay
of several transformation laws, whose balancing imposes nontrivial conditions (see
sect. 6.1).
In that case, we deal with a two-form with values in the adjoint bundle of a principal
bundle. This is the associated bundle

AdpPq– P ˆpG,Adq g. (A.1.29)

For example, consider F P Ω2pM,AdpPqq. Then we have ΨpF q P Ω2
horpP, gqpG,Adq,

and its local representation with respect to a section s P ΓU pPq is

s˚ΨpF q P Ω2pU, gq. (A.1.30)

If we additionally decompose this locally defined two-form with respect to a local
frame e P ΓU pF pTMqq, its two-form part is decomposed into its components with
respect to this basis. Thus, the local representative becomes a map

`

ps˚ΨpF qqij
˘

: U Ñ Λ2RD
˚

b g. (A.1.31)

Note that, in general, this requires two local sections s and e of the principal bundles
P and F pTMq, respectively.

In conclusion, the simplest relation between the local expressions and global forms
is the fact that the local representations are pullbacks of horizontal, vector-space-
valued forms on P with a certain transformation behavior. Both points of view are
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able to overcome the non-triviality of associated vector bundles that, for example,
F takes values in.
The relations between the three ways to view bundle-valued forms onM are depicted
the following diagram:

ΩkpM,Eq Ωk
horpP, V q

pG,ρq

Components w. r. t. local sections

Ψ

Ψ´1

gluerss´1 ˝ s˚ glue s˚

(A.1.32)

A.2 Connections and Covariant Derivatives

To keep this chapter at least a little compact, we do not elaborate on the physical
motivation of connections and their emergence in field theories, but come to their
mathematical construction directly.
Consider a principal bundle pP, π,M,Gq. As π is a submersion, the fibers are sub-
manifolds of P, i. e. P is foliated into leaves of type G by π. This gives rise to the
vertical tangent bundle T vP Ă TP.
In contrast to this, there is, in general, no foliation of P into leaves of type M
transversal to the first one. (If there was such an embedding of M into P, this
would yield a global section of P, whence, as one can show, P would be trivial).
Nevertheless, there may be a geometric distribution T hP complementary to T vP in
the sense that

TP “ T vP ‘ T hP. (A.2.1)

We call such a distribution horizontal. This can be chosen to be integrable if and
only if P is trivial.
There are other ways to characterize such a splitting of TP. One of them is to
choose a subspace complementary to T vpP in TpP by writing it as the kernel of a
linear map. As the dimension of its kernel must then be D, its image must have
dimension dimpGq. This is achieved by considering e. g. Ap : TpP Ñ g. Thereby,
we obtain a g-valued 1-form on P.

Definition A.2.1: Be pP, π,M,Gq a principal bundle over M . Consider the right
action on P generated by an element of g. As under the right-action every point
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moves smoothly, this will define the vector field tangent to these motions:

ϕ : gÑ ΓpT vPq, ϕpξqp –
d
dt |0

Rexppt ξq p. (A.2.2)

We call ϕpξq the fundamental vector field generated by ξ.

There are the following equivalent definitions of a connection on P.

(1) A connection on P is a right-invariant, horizontal geometric distribution T hP
on P.

(2) There exists a one-to-one correspondence between connections on P and one-
forms A P Ω1pP, gqpG,Adq that additionally satisfy

Apϕpξqpq “ ξ @ ξ P g, p P P. (A.2.3)

The correspondence is given by

T hP “ kerpAq. (A.2.4)

A is called the connection form or gauge field for the corresponding con-
nection, but often we refer to it just as a connection on P. We denote the
set of connection forms on P by CpPq.

(3) Let tpUi, siquiPΛ be a covering ofM by local sections of P. Then, for every non-
empty Ui X Uj “ Uij ‰ H there is a transition map gij : Uij Ñ G, x ÞÑ gijpxq

such that
sipxq “ Rgijpxq sjpxq. (A.2.5)

There exists a one-to-one correspondence between A P CpPq and collections
Ai P ΩpUi, gq subject to the compatibility relations

Ai “ Adpgij
´1q ˝Aj ` gij

˚µG, (A.2.6)

where µG is the Maurer-Cartan form of the Lie group G. The link to (2) is
given by Ai “ s˚i A.

In general, the exterior differential of a horizontal form on P will not be horizontal
anymore. However, a connection provides the tool necessary to deform the differen-
tial such that it preserves horizontality. One simply projects dω to its part acting
on T hP “ kerpAq.

Definition A.2.2: The covariant exterior differential, or just covariant dif-
ferential, of ω P ΩkpP, V q with respect to the connection A P CpPq is defined as

DA ω “ dω ˝ prkerpAq P Ωk`1
hor pP, V q. (A.2.7)

That is, applied to X0, . . . , Xk we have

DA ω “ dω
`

prkerpAqpX1q, . . . , prkerpAqpXkq
˘

. (A.2.8)
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This derivative can also be written in terms of the connection form. It then turns out
that this modified exterior differential also preserves the type of horizontal forms.

Proposition A.2.3: The covariant differential of ω P Ωk
horpP, V qpG,ρq with respect

to the connection A P CpPq is

DA ω “ dω ` ρpAq ˝^ ω P Ωk`1
hor pP, V q

pG,ρq, (A.2.9)

where for bases tIau of g and tvnu of V one defines

ρpAq
˝
^ ω – ρpIaqpvnq bA

a ^ ωn. (A.2.10)

The covariant differential of µ P ΩkpM,Eq for E “ P ˆpG,ρq V is defined as

pdA µqx “
“

spxq, s˚pDA Ψpµqqx
‰

, (A.2.11)

where s P ΓU pPq is a local section.
For the local representation of DA ω we thus have

s˚pDA ωq “ d ps˚ωq ` ρps˚Aq ˝^ s˚ω. (A.2.12)

These are local, V -valued 1-forms. After splitting off the basis of the vector space
we end up with

ps˚pDA ωqq
a “ d ps˚ωqa ` ρps˚Aqab ^ ps˚ωqb. (A.2.13)

This is the form of the covariant differential of a bundle-valued k-form that is often
used in the physics literature in the context of non-Abelian gauge theories. For
the Levi-Civita connection on TM we have P “ F pTMq and we can use a local
frame e P ΓU pF pTMqq as a section of both the frame bundle and the gauge bundle
simultaneously. This fact will be important in section 6.1.
In this case,

ρps˚Aqcd — ω c
a d β

a, (A.2.14)

and the components ω c
a d are called the Christoffel symbols of the connection with

respect to the frame e.

The probably most important quantity derived from a connection is its field strength.

Definition A.2.4: The field strength of a connection A P CpPq is

FA “ DAA “ dA` 1
2 adpAq

˝
^ A P Ω2

horpP, gqpG,Adq . (A.2.15)

Its bundle-valued pendant on M is

FA “ Ψ´1pFAq P Ω2pM,AdpPqq. (A.2.16)
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Its local representations s˚FA P Ω2pU, gq can be written in terms of the local repre-
sentations s˚A P Ω1pU, gq of A by

ps˚FAq “ dps˚Aq ` 1
2 adps

˚Aq
˝
^ s˚A. (A.2.17)

We list some important properties of this field strength two-form.

Proposition A.2.5: Let pP, π,M,Gq be a principal fiber bundle over M , A P CpPq
a connection on P and FA its field strength. Then the following assertions hold true:

(1) The field strength satisfies the Bianchi identity

DA F
A “ 0. (A.2.18)

(2) The square of the covariant derivative on ω P Ωk
horpP, V qpG,ρq is

DADA ω “ ρpFAq
˝
^ ω P Ωk`2

hor pP, V q
pG,ρq. (A.2.19)

(3) The field strength satisfies

prT vP
`

rX,Y s
˘

“ ϕ
`

FApX,Y q
˘

@X,Y P ΓpT hPq. (A.2.20)

Therefore, P admits a flat connection (i. e. FA “ 0) if and only if the geometric
distribution T hP is integrable.

Finally, we introduce the notion of reductions of principal fiber bundles.

Definition A.2.6: A reduction of a principal fiber bundle pP, πP ,M,Hq is a triple
pλ,Λ,Qq, where pQ, πQ,M,Gq is a principal G-bundle overM , λ : GÑ H, g ÞÑ λpgq

is a homomorphism of Lie groups and Λ : QÑ P, q ÞÑ Λpqq is a homomorphsim of
principal fiber bundles, i. e. a map satisfying Λ ˝RQ

g “ RP
λpgq ˝ Λ.

This is often depicted as the following commutative diagram:

P ˆH

QˆG

P

Q

MΛˆ λ Λ

RQ

RP

πQ

πP

(A.2.21)

One can then show that connections on Q induce connections on P. That is, to
every A P CpQq there exists an Ã P CpPq such that

Λ˚Ã “ λ˚ ˝A and Λ˚F Ã “ λ˚ ˝ F
A. (A.2.22)
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In general, the converse does not hold true, since Λ˚Ã does not necessarily take
values in λ˚pgq Ă h for a generic Ã P CpPq. This is basically the foundation of
the classification of G-structures in section 2.2 and also plays an important role
throughout chapter 6. In this thesis we make extensive use of the special type of
bundle reductions where Q is an embedded principal subbundle of P and λ is an
embedding of a Lie subgroup G Ă H into H, i. e.

P ˆH

QˆG

P

Q

MιQ ˆ ιG ιQ

RP

RP

πP

πP

(A.2.23)

Note that, in this situation, the right-action of G on Q is just the restriction of the
right-action of H on P to the subgroup G Ă H and the principal subbundle Q Ă P.
The extension Ã of a given A P CpQq is just the extension to the ambient principal
bundle. Thus, it satisfies ι˚Ã “ Ã|Q “ A.
As a final comment, note that such reductions can be constructed from a given
principal bundle. That is, for any homomorphism of Lie groups σ : GÑ H, g ÞÑ σpgq

one can construct the associated H-bundle

P – QˆpG,`˝σq H, (A.2.24)

where ` : H ˆH Ñ H is the left-multiplication on H. It can be shown that P is a
principal H-bundle, called the σ-extension of Q, and that, in this situation, Q is a
bundle reduction of P.
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