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Abstract

The main concerns of this thesis are the construction of 6-dimensional manifolds
with SU(3)-structure as well as finding instantons on these spaces.

We begin by giving a brief exposition of how both play a role in heterotic flux com-
pactifications. Here the internal geometry is required to carry an SU(3)-structure
defined by a Killing spinor, and the gauge field background has to be an instanton
with respect to this spinor if the compactifications is to preserve supersymmetry.
Chapters 2, 3 and 4 are devoted to the relevant mathematical framework. First,
we elaborate on the geometry and classification of G-structures, their relation to
nowhere-vanishing, or invariant, sections of associated vector bundles, and connec-
tions on the respective principal bundles in chapter 2.

Chapter 3 then introduces several types of SU(2)- and SU (3)-structures in five and
six dimensions, respectively. We include a section on Sasakian geometry and con-
sider a family of different types of SU(2)-structures on S° as an example.

The mathematical background is completed by a treatise on the instanton condition
and different ways of implementing it in chapter 4. We investigate the behavior of a
G-structure upon right-action with basepoint-dependent elements of GI(D,R) and
classify which of these transformations again yield a G-structure. Subsequently, we
provide an answer as to when a pair of G-structures related by such a deformation
induces the same instanton conditions.

In chapter 5 we introduce a general method to obtain SU(3) 6-manifolds from 5-
dimensional manifolds with families of SU(2)-structures. We then show how the de-
formations considered in chapter 4 can be combined with this construction. Starting
from Sasaki-Einstein 5-manifolds M®, we thereby obtain Kihler-torsion and nearly
Kiihler SU(3)-structures on sine-cones over M° as well as half-flat SU(3)-structures
on the cylinder over M®. In an appropriate infinite-volume limit, both sine-cones
approach the Calabi-Yau metric cone over the Sasaki-Einstein space.

Chapter 6 starts with a formalization of the procedure introduced in [1], which al-
lows us to reduce the instanton equations to matrix equations for a perturbation of
a given instanton. Using suitable ansétze, we first reproduce solutions of [2] for the
Kahler-torsion sine-cones and argue that these will be present in all our construc-
tions. On the nearly Kéhler sine-cones, we at first obtain these solutions for the
perturbation only, but we then find another su(2)-valued instanton on that space.
The computation of the nearly Kéhler canonical connection then provides us with a
suitable ansatz for extensions of that second instanton. Thereby, we independently
prove that the canonical nearly Kéhler connection is an instanton and obtain another
solution. On the half-flat cylinders, we obtain solutions with constant perturbation
only, which correspond to new instantons living on M?® rather than on the cylinder.
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Chapter 1

String Theory and Geometry

1.1 Introduction

Interest in string theory has led to vast progress in several areas of current research,
among which itself is only one of many. String theory has repeatedly pointed out
where the frontiers of our present insight into physics and mathematics are located
and often even how these may be extended. However, from a physicists point of
view, string theory at its present stage is a purely hypothetical concept. There is
no feature of this framework which could be used in order to experimentally dif-
ferentiate between string theory and the somewhat disjoint union of quantum field
theory of elementary particle physics and general relativity, the two pillars of todays
research in high-energy physics. This is mostly because the discrepancies between
these frameworks would become apparent only at very high energies not accessible
in experiments at this point.

While much is known about the roof that is supported by these pillars, there is no
conclusive answer as to what mutual foundation they rest on. Nevertheless, string
theory appears to be a good candidate for such a unifying concept. It is an ex-
traordinarily rich framework, allowing for intuitive limits in which it reproduces the
physics of elementary particles and general relativity, while avoiding their shortcom-
ings in high-energy regimes. Also, on the purely mathematical side, it has shown
to be fruitful, as the theory is so intricate that at several points physical research
implies that there exist ways in certain directions, which one cannot really uncover
before improving the mathematical toolkit. New techniques drawn from research in
string theory keep having important applications to statistical and particle physics,
differential and algebraic geometry and topology, and many more active fields of
current research.

In order to understand the physics behind a theoretical model, it has repeatedly
proven valuable to find explicit solutions to its equations. These can then be ana-
lyzed and interpreted, and have often led to deeper insights into the physical im-
plications and scope of the theory. Some of the most prominent examples are the
Lienert-Wiechert potentials in electromagnetism, Onsager’s solution to the Ising
model, the Schwarzschild and FLRW metrics in general relativity, and perhaps most
recently the AdSs x S° solutions of type II string theory.

Here we will work towards explicit solutions to heterotic supergravity, the low-energy
effective theory of the heterotic string. In particular, we will focus on the instanton
equation, which is one of the conditions for unbroken supersymmetry, and whose so-
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lutions have been successfully extended to solutions of the complete set of heterotic
supergravity equations for example in [2—4].

Although motivated by the physical framework of string theory, the problem we are
considering is of mathematical and, in particular, geometrical nature. Therefore, we
choose to employ a very mathematical style of writing and aim at a high level of
mathematical rigor in this work.

The outline of this thesis is as follows: In chapter 1 we will first review the subject
of string compactifications very briefly, thereby introducing the relevant equations.
We see that the presence of a generator of supersymmetry imposes certain restric-
tions on the geometry of the spacetime background M. More precisely, it implies
the existence of a G-structure on M.

Therefore, we explore G-structures and some of their geometric features in chap-
ter 2. We emphasize the point of view of principal fiber bundles, which are the
very foundation of the mathematics we need to pursue our goal of finding solutions
to the instanton equations. After introducing several different characterizations of
G-structures, we turn to connections on the principal bundles that the G-structures
are subbundles of and review the classification idea of Gray and Hervella [5] in terms
of such connections.

We review the definition of SU(2)-structures in 5 and SU(3)-structures in 6 dimen-
sions, as well as some of their geometric features, in chapter 3. Additionally, we
provide a brief overview of Sasakian geometry.

Chapter 4 concludes the part on the mathematical background by elaborating how
G-structures induce instanton conditions and how these can be formulated in dif-
ferent ways. In the last section of that chapter, we consider certain deformations of
G-structures and prove a classification (proposition 4.3.1) of the subclass of these
deformations that leads from a given G-structure to a new one. In an extra step,
we derive an algebraic constraint on the deformations which is equivalent to the
property that the original and the new G-structure define precisely the same instan-
tons in corollary 4.3.5. In particular, G-structures related by deformations of the
considered type have precisely the same instanton moduli spaces.

We begin chapter 5 by giving a general prescription of how one can obtain several
SU (3)-structure 6-manifolds from SU(2)-structure 5-manifolds in proposition 5.1.1.
The combination of this result with the deformations of G-structures investigated
in chapter 4 enables us to explicitly construct several types of G-structures on con-
ical extensions of a given manifold. We apply this procedure to Sasaki-Einstein
5-manifolds and obtain Ké&hler-torsion and nearly Ké&hler SU (3)-structures on sine-
cones as well as half-flat SU(3)-structures on cylinders over these spaces.

Chapter 6, as the final chapter of this thesis, is devoted to the construction of in-
stantons on these spaces. First, culminating in proposition 6.1.4, we formalize a
procedure introduced in [1]. This procedure reduces the instanton condition on
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gauge fields to a set of matrix equations on a perturbation of a given instanton.
Subsequently, we carry out this reduction in several situations on the spaces con-
structed in chapter 5. Here the formal results obtained throughout this thesis find
numerous applications and endow us with immediate insight into subtle details of
the mathematical problems under consideration.

1.2 The Five String Theories

We begin with a very compact tour from some of the basics of string theory to the
point where this thesis is embedded into current research. Therefore, this chapter
is a merging of different introductory texts on string theory, mostly taken from the
textbooks [6] and [7].

In contrast to quantum field theory, in string theory the fundamental building blocks
of matter are assumed to be strings. These are one-dimensional objects of very small
length. Strings are assumed to move through spacetime, their motion being governed
by the Polyakov action [6]

1

4o/

Splh, X] = f d%0 v/ —h_ P (0, XH) (05X") g (X). (1.2.1)
b
Here X : ¥ — MP is an embedding of the string world sheet ¥ into the spacetime
manifold MP, ¢ is a Lorentzian metric on M, and h is a Lorentzian metric on ¥,
an auxiliary field. The notation h._ indicates that the metric on TMP is to be used,
rather than the metric it induces on T*MP. o = 27% is called the Regge slope,
where T is the tension of a string. Due to the X-dependence of g, this action is
highly non-polynomial. However, assuming MP to be Minkowski space one can
transform this action to a polynomial one by choosing the conformal gauge.
Viewing the X* as massless fields on the world sheet, they are seen to satisfy the wave
equation., whence the decompose into left- and right-moving parts. By canonical
quantization of their Fourier modes, one obtains creation and annihilation operators.
This points out a very important duality in string theory. The quantities on the
world sheet can on the one hand be viewed as observables on spacetime, as for
example coordinates of M. On the other hand, however, they may be considered
as quantum fields on 3. One can then interpret these geometrically as measuring
certain quantities assigned to points of the string world sheet, as for example the
position of a certain point o € 3 in spacetime.
In analogy to the picture of quantum field theory, strings are assumed to be able to
appear at arbitrary points in spacetime, and their excitations can then be interpreted
as excitations of effective quantum fields. (This is a picture which would actually
require a string field theory, which is an active field of current research. For several
results and further references see e. g. [8,9].)
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The analysis of the particle spectrum of the above theory leads to remarkable and,
yet, peculiar conclusions. We list just the most important ones:

e The theory necessarily contains a tachyonic particle, i.e. one with negative
mass square. This cannot be interpreted in a phenomenologically consistent
way.

e Since the quantum fields on X are purely bosonic, the spacetime theory does
not contain fermionic particles.

e Different ways of quantizing the action (1.2.1) coincide for D = 26 only,
whereas we have observed four spacetime dimensions so far.

e Most remarkably, the spectrum contains a massless particle of helicity 2, whose
interactions in the emergent spacetime field theory coincide with those induced
by the Einstein-Hilbert action up to corrections of order o’.

The last property implies that general relativity is emergent in the effective spacetime
field theory of the quantized string theory up to corrections suppressed by o’. While
this may seem surprising, it may be due to the fact that in two dimensions, as on
the string world sheet, the Finstein-Hilbert action is topological. Hence it shifts the
action by a constant only. This means that the Polyakov action (1.2.1) is in fact
the full theory of D real massless scalar fields living on ¥, coupled to a gravitational
field. Being trivial, the Einstein-Hilbert part of the action can of course be quantized
in two dimensions. Here one takes for granted that quantization is consistent with
the assumption that it is always possible to go to the conformal gauge. That this
holds true is more apparent in path integral quantization, where all fields are treated
as classical ones in calculations.

Considering the quantum field theory on the world sheet as fundamental, one may
alter this two-dimensional model for example by the inclusion of supersymmetry.
One can introduce either global supersymmetry on the world sheet fields (RNS
formalism) or local supersymmetry on the target space coordinates (GS formalism)
[10,11]. Either way this adds new fermionic fields to the world sheet, which in turn
add fermionic excitations to the spectrum of the effective field theory of the bosonic
string.

Thereby, the fermion problem of the bosonic string gets cured. However, the tachyon
problem must be addressed by hand. Either one has to eliminate half the fermionic
degrees of freedom independently in the left- and right-moving sectors of the RNS
string, or one has to choose a chirality of the anticommuting coordinates on the target
space. Both of these procedures remove the tachyonic state from the spectrum.
The dimension problem is affected, but not solved by the inclusion of supersymmetry.
The critical dimension of superstring theories turns out to be D = 10.

Of these superstring theories there exist three versions, namely:

e Type IIB: Oriented open and closed superstrings with the same chiralities in
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the right and left-moving sectors,

e Type IIA: Oriented open and closed superstrings with opposite chiralities in
the right and left-moving sectors,

e Type I: Unoriented open and closed superstrings.

These are not the only consistent versions of superstring theory. There have been
constructed two so-called heterotic superstring theories, which contain closed strings
only. In contrast to the aforementioned theories, their left-moving sector consists of
the left-moving sector of the D = 26 bosonic string with 16 of the bosonic coordinates
compactified on a torus. Their right-moving sector coincides with that of the D = 10
superstring. The name heterotic stems from this asymmetry of the right and left-
moving sectors. The special feature of these theories is a local world sheet symmetry
in the 16 compactified bosonic coordinates. Generically, this is a global U(1)-
symmetry, but for special radii of the internal torus it gets enlarged to non-Abelian
symmetry groups. There are only two such symmetry enhancements possible, and
the resulting theories are named after the Lie groups of these global symmetries.
They are

e H(Eg x FEjg): Heterotic superstrings with symmetry group Eg x Eg,
e H(SO(32)): Heterotic superstrings with symmetry group SO(32).

All of these five known versions of superstring theories give rise to effective field
theories in their perturbative expansions. These differ in certain features, as for
example in their particle spectra. Despite this, the five string theories turn out
to be connected by certain non-perturbative dualities, leading to the conjecture
that there exists an undiscovered framework of which the string theories are certain
perturbative sectors.

As we are still to explore even the low-energy phases of this framework, the concern of
this thesis lies within a particular branch of the string theories, namely the heterotic
theories. For this reason, we focus on heterotic strings in the remainder of this
chapter.

1.3 Low-Energy Effective Theory of the Heterotic String

As explained in the previous section, strings admit certain modes of oscillation,
which appear as particles in the effective theory of the string theory under consid-
eration. That is, one assumes strings to potentially provide excitations at any point
of spacetime, just as a field would do. In particular, on a length scale which is
macroscopic compared to the string length strings will effectively behave like point
particles. In other words, the high-energy phase of string theory changes to a phase
of effective point particles in low-energy regimes, and an effective description in
terms of qutnum fields becomes appropriate.
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In these regimes only the massless excitations of strings have to be taken into ac-
count for the particle content of the effective field theories. Nevertheless, one has to
keep in mind that all excitations are relevant in the string theory computations of
scattering processes of string excitations. Here, massive modes still occur as internal
legs in scattering processes. Their contributions to scattering processes affect the
effective field theory, thus giving rise to stringy corrections of low-energy physics.
In order to arrive at a proper field theory, one then needs an effective Lagrangian
for the massless fields. This may be obtained by remodeling the interactions of the
string modes that encode the effective particle content on the corresponding fields.
As the effective fields arise from strings, a string of the respective theory should
interact with a background of these fields. This turns out to be manifest due to
the following important fact: An amplitude for the propagation of a string through
a background of its effective fields can be computed in two different ways. First,
one can compute it from the free string action with certain coherent insertions of
vertex operators. That is, one considers a string that interacts with the background
of strings which produce the respective field, and that propagates as a free string
between these interactions. Second, the same amplitude can be computed from the
action of a string moving through a background of just these effective fields, which
are taken to interact with the quantum fields on the string world sheet. Remark-
ably, these two computations give precisely the same result. Moreover, as in the first
picture the propagation of strings in such a background can be computed from just
the standard action, i.e. the one without additional background fields, the world-
sheet theory still has (super)conformal symmetry. This should then be present in
the second picture as well. Again remarkably, the conditions on the background
fields implied by the requirement that the conformal invariance of the world sheet
theory be maintained precisely coincide with the field equations as derived from the
low-energy effective spacetime actions.

The field content of the low-energy effective field theory of the heterotic string is
that of N = 1, D = 10 supergravity coupled to N' = 1, D = 10 super-Yang-Mills
theory. Its bosonic sector consists of the real scalar dilaton field ®, a gauge field A
for either a SO(32) or an Fg x Eg gauge symmetry on spacetime, a metric G and a
2-form potential By. The fermionic sector is formed by the supersymmetry partners
of the bosonic fields, which are the dilatino A, a gaugino x and a gravitino .

As fields on spacetime, these are related via local supersymmetry transformations
that can be found e.g. in [11]. We consider effects of quantum fluctuations as small,
thus splitting the fields into quantum fluctuations and classical background fields.
These classical fields may be considered as the vacuum expectation values of the
quantum fields. Of course, all this is only consistent in the low-energy region of the
theory, which is the regime we are studying.

As it is for common local symmetries, a field configuration does not break supersym-



1.8 Low-Energy Effective Theory of the Heterotic String

metry spontaneously if it is invariant under the symmetry. Therefore, if we intend
not to break supersymmetry at this stage, we have to require all supersymmetry
variations of the fields to vanish. A great simplification of the coupled system of su-
persymmetry transformations is achieved by the restriction to field configurations in
which all the fermionic fields vanish identically. For example, all the supersymmetry
variations of the bosonic fields will vanish, as they are built from the fermionic field
content.

This leaves us with the supersymmetry transformations as considered for instance
in [10]:

S =VTe,
A =~(d® — %H)(e), (1.3.1)
5x = — 5 A FA)e)

Here, v : A*T*M — CI(TM, g), pu® e, — uy, is the isomorphism from the exterior
tensor algebra of the cotangent bundle of M into the Clifford bundle CI(T'M, g) of
(M, g), where M is the spacetime manifold. Clifford multiplication is understood
as a map Cl(TM,g) — End(S), for S being a spinor bundle over M. H is a
field-strength 3-form subject to the anomaly cancellation condition

/

H=dB, + O‘Z (CS(w™) — CS(A)), (1.3.2)

where CS(w™) and CS(A) denote the Chern-Simons 3-forms associated with the con-
nections w~ and A respectively, and F4 is the field strength of the gauge connection.
The connections V* differ from the Levi-Civita connection by a totally antisymmet-
ric torsion term, i.e. with b, o T'e Q3(M). In local coframes their connection forms
are given by

1
(wi)abc = (wg)abc + 5 Habc- (1.3.3)

€ is the generator of supersymmetry and, therefore, has to be a nowhere-vanishing
spinor field on M. As indicated above, unbroken supersymmetry requires all these
variations to vanish identically.

Under the restriction of vanishing fermionic fields, only the bosonic fields are dy-
namical, whence the low-energy effective action contains these only. To first oder in
string corrections, the bosonic sector of the low-energy effective action for the field
theory emergent from the heterotic strings reads [12]

1 1
S = 52 fleX V—g. e ?? <Sc(g) +4(V®)? - B |H|2>
10
. (1.3.4)
+ 2.7 fleX V—g.e 2® <tr(|R+|2) - tr(|FA|2)> + O(a’).
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Here g is the spacetime metric, Sc(g) the scalar curvature computed from it, and
R* is the curvature of the connection V*. The coupling constants are related by
G1072 = %’ /{10_2 [6}

The field equations that one obtains upon variation of the fields read [12]

1
0 = Ric(g)uw +2(V9dP), — 1 H

pA
HPA H,

/

« - — PAR A AP
+4<R upre B0 —tr(F i F V)),

1 /
0= Sc(g) +4A® —4|d®[* - J|H|* + %tr(|R_|2 — [F4)), (1.3.5)
0=da(*(e?®FY) ++H A e 2 F4,
0=d(=(e?®H)).

The low-energy field theory of the heterotic string theory is often called heterotic
supergravity. Having established the fundamental framework, we would like to ob-
tain solutions to its field equations. This is desirable since they may feature special
properties that do not occur in other theories of spacetime. It is possible, moreover,
that important consequences of the theory may not be seen from the field equations
directly, but rather become apparent from its solutions only.

In general relativity, for example, solutions like the Schwarzschild and Friedmann-
Lemaitre-Robertson-Walker metric have had a tremendous impact on research in
this field. The former introduced the concept of event horizons, whose existence
had not been considered until then. The latter, on the contrary, became the first
Standard Model of cosmology, already bearing evidence for the big bang hypothe-
sis. Thus, solutions of special type hopefully would enable us to learn more about
the physical content of string theory eventually. However, general solutions will not
yield phenomenologically acceptable models. We still have to refine the geometry of
spacetime.

1.4 Compactification: From Calabi-Yau to Fluxes

The inclusion of supersymmetry yields a great leap forward in matching string the-
ory with reality. Nevertheless, there remain open problems, some of which are quite
conceptual in nature. It turns out that at this point one is several steps away from
even phenomenologically matching observations.

First, there is the issue that supersymmetry has not been observed so far, whereas
it is intrinsic to all superstring theories. This may be resolved, for example, by
spontaneous symmetry breaking in the effective field theory. Furthermore, it is not
inherent in the framework that the low-energy effective theory will contain the spec-
trum of physical particles we observe. At the electroweak scale, the effective theory
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has to contain the Standard Model of elementary particles and general relativity,
possibly with other particles forming dark matter.

This is connected to the third, perhaps most obvious and urgent problem, the di-
mensions problem. All superstring theories can be consistent on the quantum level
only if the spacetime the strings live in is of dimension D = 10. This, of course, is
in harsh contrast to the evident fact that we observe only 4 spacetime dimensions.
One way out of this dilemma is to assume that in 6 of its 10 independent directions
spacetime is of very small size. This procedure is called compactification. Although
not the most general, a straightforward ansatz for such a spacetime is a direct prod-
uct geometry M0 = M* x MS. For this to resolve the dimensions problem, the
internal space M has to be a compact manifold.

This also has an effect on the particle content of the effective theory. The particles
we observe can be described as excitations of fields with components transforming
in representations of Spin(1,3). However, in all superstring theories, the string exci-
tations are states in representations of Spin(1,9). Assume a spacetime as described
above was endowed with a metric g such that TM* 1, TM 6. This allows to choose
orthonormal bases on the two factors separately Therefore the representations of
Spin(1,9) splits into representations of Spin(1,3) x Spin(6), thus leading us closer
to the desired physical behavior.

We may then, as a first step, search for field configurations in which the only non-
trivial field on M* is the metric. These will appear as vacuum configurations on the
effective spacetime M*. In particular, this means that any Spin(1,3) field content
is trivial as this comprises the field content of the effective 4-dimensional theory.
Thus, the bosonic background fields ®, F4 and H have non-vanishing components
along the internal space only.

Furthermore, assume that the effective spacetime M? has certain symmetry prop-
erties, as for example that it is a locally symmetric space. This implies that around
every x € M* there exists an open subset U, — M?* together with a local isome-
try sp @ Uy — U, satisfying (sz)y)e = —Ip,as. In order for this symmetry to be
an actual feature of the effective theory in 4 dimensions, it must not be sponta-
neously broken by the physics in the internal, compact directions. This has the
following implications: If H has non-vanishing components only in the internal
directions, we obviously have (s; H), = H|, and also (s; ®)(z) = ®(z), as we
take s, to act as the identity on MY We could as well investigate the change
of these fields in certain directions. This must then be invariant under the local
isometries as well, since s, is defined on a whole neighborhood of . That is, we
should require s,*(Lx H)|, = (Lx H)}, for any X € T,M*. However, we have
s:*(Lx H)jy = (L-x H)|; = —(Lx H)|,. Thus, H and by the same reasoning ®
may not depend on the macroscopic directions, if we require, for instance, locally
symmetric effective spacetimes. Assuming that the gauge sector lives on a princi-
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pal bundle over M9, this must also hold true for local representations of the gauge
field A and, therefore, as well for its field strength F4 and Riemannian metric ge.
As a very special case, we might search for compactifications in which the effective
spacetime M* is Minkowski space. This is covered by the preceding argumentation.
It thus becomes interesting to study 6-dimensional Riemannian manifolds carrying
the fields ®, A and H. As the spectrum and interactions of the superstrings are
supersymmetric, the effective field theories of superstring theories feature super-
symmetry by construction. Therefore, there must be a nowhere-vanishing spinor €
that generates the supersymmetry transformations. Note that, as argued above, the
Spin-structures decompose for direct product ansétze for the background spacetime,
and the nowhere-vanishing spinor has to factorize as €19 = €4 ® €. In particular, eg
is a nowhere-vanishing spinor on M9, i.e. it is independent of the coordinates of M.
It spans a one-dimensional subbundle of the spinor bundle on M9, whose structure
group must therefore be reducible to a proper subgroup of Spin(6). This turns out
to be SU(3), which then also is the structure group of M®. We refer to section 2.1
for a mathematical treatment of G-structures.

The task is thus to find 6-dimensional manifolds with SU(3)-structure, and then
construct solutions to the field equations (1.3.5) of the low-energy effective field the-
ory.

This system simplifies further if we put H = 0 and ® = const. In this situation,
the vanishing of the first supersymmetry variation in (1.3.1) requires the existence
of a spinor that is parallel with respect to the spin connection induced by the Levi-
Civita connection of the metric. Such a parallel spinor is either trivial or nowhere-
vanishing. In the latter case this does not only restrict the holonomy group of M6
to be contained in SU(3), but one can also show that Riemannian manifolds car-
rying a parallel spinor must be Ricci-flat. This restricts the internal space to be a
Calabi-Yau manifold, since these are compact 2n-dimensional manifolds with holon-
omy group in SU(n) [6].

Compactification on Calabi-Yau spaces hence yields a set of field equations much
simpler than the original one and enables us to use the rich mathematical tools
developed within this framework. Compactifications on Calabi-Yau manifolds have
been studied extensively since the early days of superstring theories, for instance
in [11,13] and references therein.

Taking a closer look it has been discovered that these models suffer from problems
unacceptable from a phenomenological point of view. The reason is that certain
geometric degrees of freedom of the internal space are not coupled to the remaining
theory. These directions in the space of possible structures on the internal manifold
are called moduli. Due to the decoupling of the geometries of M* and M9, they can
be chosen independently at every point 2 € M*. Therefore, they appear as fields on
the effective spacetime with values in the moduli space of the internal manifold. In
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1.4 Compactification: From Calabi- Yaou to Fluxes

Calabi-Yau compactifications, these moduli fields turn out to not have a potential.
Therefore, their vacuum expectation values are not under control. However, moduli
may determine observable features of the theory, as for example the size of the in-
ternal space. This, of course, has to be restricted in order not to spoil consistency
with the phenomenological motivation of the compactification procedure.

Letting go of the restriction ® = 0 and H = 0, which lead to compactifications on
Calabi-Yau manifolds, we arrive at the subject of flux compactifications. These are
more general compactifications allowing for non-trivial H-field strength and dilaton
field. These might introduce potentials for the moduli fields via Yukawa couplings
and could, therefore, make the vacuum expectation values of the moduli fields take
phenomenologically acceptable values. While this works in certain examples (see for
instance [13,14] and references therein), so far there has not been found a mechanism
which fixes the moduli problem generically.

For the models we consider we keep the simplifying assumptions that led to H, Fs
and ® being non-trivial on the internal space only. Such compactifications of the
heterotic string theories have first been investigated in [15].

Still, compactifications do not simply arise from string theory, but one has to choose
a geometric ansatz and then investigate the low-energy effective field theory in or-
der to find vacuum solutions. It is hoped that ultimately a mechanism will be
found which determines spacetime and its geometry dynamically. However, it seems
unlikely that this is possible without considering back-reactions of strings to the
background geometry. For example, we first might choose a certain geometry of the
internal space MY make ansitze for some of the fields and then try to extend this
set of fields to a solution of either the heterotic supersymmetry or supergravity equa-
tions. The equations for heterotic supersymmetry, or BPS equations, are given by
requiring the supersymmetry variations (1.3.1) to vanish identically, while the field
equations of heterotic supergravity are (1.3.5). Such extensions have successfully
been constructed for example in [12], starting from solutions to the gauge sector
and making an ansatz for H.

This is the motivation for this thesis. We will construct 6-dimensional manifolds
with SU(3)-structure that have a geometry better accessible than that of just a
generic SU(3) 6-manifold. Subsequently, we will search for solutions to the so-called
instanton equation induced by these SU (3)-structures. The instanton equation im-
plies the Yang-Mills equations with a certain torsion term, thus yielding an ansatz
for H. Also, it implies the gravitino equation, which is the requirement that the
third variation in (1.3.1) vanishes. Furthermore, it has been shown [16] that the
heterotic supergravity equations (1.3.1) together with the anomaly cancellation con-
dition (1.3.2) imply the field equations (1.3.5) in quite general situations.

However, in the next three chapters, we will take a detour through the geometry of
G-structures at first. We will see how one can classify these, before we specialize to
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1 String Theory and Geometry

SU(2)-structures in 5 dimensions and SU (3)-structures in 6 dimensions. We then
investigate the instanton condition induced by a G-structure in general and finally
bring full circle this detour by seeing how the spinorial version of the instanton equa-
tion arising in (1.3.1) is linked to the more general version of the instanton condition

we will encounter in section 4.1.
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Chapter 2

G-Structures and Intrinsic Torsion

2.1 Fiber Bundles and G-Structures

In this section, we introduce the notion of a G-structure on a principal bundle. The
results obtained here are already known in the literature [17-19], but we choose to
provide an exposition of the principles for the sake of completeness.

Gauge theories, spin geometry and G-structures are formulated in the language
of principal fiber bundles and associated vector bundles. Their construction and
elaboration of their properties can be found in the literature, as for example in [18].
This also is the reference for the short exposition in appendix A, to which we refer
the reader for a compact introduction to the formalism and the notation we use
throughout this text.

Consider a principal fiber bundle (P, 7, M, H) and a representation p of H on a k-
dimensional K-vector space V. This data gives rise to the associated vector bundle

E="P X(va) V. (2.1.1)

Assume that E is endowed with a non-vanishing section such that around every
x € M there is a local frame of E with respect to which this section has certain
fixed, constant coefficients.

As an example, one may think of a Riemannian metric g € T'(V2*T*M) on M. Around
every point of M one can find local orthonormal frames for g. Hence, a Riemannian
metric is a section in a vector bundle associated to F(T'M) having the aforemen-
tioned property.

Any section with this property also defines distinguished bases of the fibers, namely
it singles out those bases with respect to which it has constant coefficients. Different
bases with this property are related by linear transformations that leave these coef-
ficients unchanged. This defines a subgroup G of GL(k,K), namely the stabilizer of
the constant coefficients in V. In the example of a Riemannian metric, this group
is precisely the group O(D) of orthonormal transformations.

Again one can show (and we will do so below) that the set of these bases defines a
principal G-bundle, which is in particular a reduction of the frame bundle. This is
called a G-structure.

We will now make this more heuristic exposition mathematically precise. The fol-
lowing defines a G-structure to be a special type of bundle reduction (see A.2 for the
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2 G-Structures and Intrinsic Torsion

definition of a bundle reduction). It is a slightly generalized version of the notion
given in [17].

Definition 2.1.1: Let (P,m, M, H) be a principal H-bundle over M. We define a
G-structure on P to be a reduction (\,t) of P to a principal bundle (Q,m, M,G),
where 1 is the inclusion map.

For H=GL(D,R), G < H we refer to a G-structure on F(TM) as a G-structure
on M.

In fact, one could use more general bundle reductions (e. g. [18]), but for our purposes
this will be sufficient. However, this definition puts restrictions on A.

Lemma 2.1.2: In the above definition of a G-structure, A must always be injective.
Proof. Assume there are g,¢' € G such that g # ¢’ and \(g) = A(¢’). Then, for

g€ Q, Rf(g)b(q) = Rf(g,)L(q) and equivalently, ¢(q) = Rz\p(g/g,l)
injective, this is true if and only if ¢ = Rg%g,lq. As R€ is simply transitive, this

t(q). But, since ¢ is
implies g = ¢'. O

Thus, the Lie group homomorphisms we can use in the construction of G-structures
due to definition 2.1.1 are injective. As +(Q) < P is an embedded submanifold that
is closed under the right-action of G given by g — RZ;, the A\ are embeddings of G
into H. Therefore, the following definition is equivalent to definition 2.1.1.

Definition 2.1.3: Let (P,n, M, H) be a principal H-bundle. A G-structure on P
is a principal subbundle (Q,m, M, A\(G)) of P having structure group A(G) for some
embedding A : G — H.

We will make use of definition 2.1.3 in the following, and we will most of the time
identify G' with its embedding A(G). Thus, we drop the explicit A and view the
structure group of the G-structure as a subgroup of GL(D,R).

In the heuristic approach above, we used a certain section of an associated vector
bundle to define a principal subbundle of F/(F) and thus a G-structure. A Rieman-
nian metric, for instance, defines a unique O(D)-structure on M by singling out the
subbundle of F(T'M) consisting of orthonormal frames. We may now ask whether
there is a general link between sections of the above kind and G-structures on a
principal bundle.

First, we need the statement that bundles associated to P may also be constructed
from the reduced principal bundle of a G-structure.
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2.1 Fiber Bundles and G-Structures

Lemma 2.1.4: Assume that the principal bundle (P, 7, M, H) admits a G-structure
(Q,m,M,G), and that E =P x (g ,) V is an associated vector bundle for P and the
H -representation p on V.

Then we have

E=Pxm,V = QX(G,mc)V‘ (2.1.2)
Proof. E consists of equivalence classes [p,v], p € P,v €V, where
[p,v] = [Rup, p(h~1)(v)] Vh e H. (2.1.3)

By the transitivity of the H-action on the fibers of P, to every p € P we can find an
h € H such that Ry, p = g € Q. That is, every [p,v] € P x (1,p) V has a representative
[¢, p(h~")(v)] where g € Q.

This, however, is the very definition of an element of Q x g, pic) V', due to the fact
that @ < P is a principal subbundle.

By the same reasoning, every [q,v] € Q X(Gpic) V is already an element of the
associated bundle P X (g7, V. O

Note that it is crucial that the bundles are exactly identical and not just isomorphic,
as they would be if we had used more general bundle reductions instead of embedded
subbundles. Perhaps the most common example of this assertion is that the tangent
bundle T'M of a semi-Riemannian manifold can be built from either any local frames
or just the orthonormal frames, i.e.

TM = F(TM) xGrpRr),p») R” = SO(M, 9) X (50(p.q).) R”- (2.1.4)

P
Here, SO(M,g) is the bundle of orthonormal frames defined by g, and p is the
standard representation of GL(D,R) on RP.

Of course, p can be any H-representation on V. In particular, it is not required
to be irreducible. Furthermore, even if p is irreducible as an H-representation,
its restriction to G as a G-representation on V will in general be reducible. In
this case, the G-representation decomposes into irreducible representations (at least
for G being compact). The induced decomposition of V' = (—Di\i 1 Vi into invariant
subspaces V; furnishes a decomposition of F.

Definition 2.1.5: We call a vector bundle E = P Xy, V irreducible, if the
representation p of H on V' is irreducible.

Note that the property of irreducibility depends on the structure group principal
bundle, that E is associated to. Thus, we have
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2 G-Structures and Intrinsic Torsion

Proposition 2.1.6: Consider (P,m, M, H) a principal H-bundle over M admitting
a G-structure Q, where G is compact subgroup of H. Let p be a representation of H
on the vector space V.

Then pig will in general be reducible to irreducible representations p;, and there is
a decomposition of E =P X, V:

N N
E=@® 2x@mVi =DE, (2.1.5)
i=1 i=1
where each of the E;, 1 = 1,..., N is irreducible as a vector bundle associated to Q.

This yields

Corollary 2.1.7: If one of the terms in the splitting (2.1.5) is a one-dimensional
vector bundle associated to Q wvia the trivial representation of G, then this vector
bundle allows for a nowhere-vanishing section. Furthermore, there is a section which
has fized local representation with respect to any local section s of Q. FEvery such
section of a vector bundle is parallel with respect to every connection on Q.

Proof. Define a section e € I'(E;,)) via

e(m(q)) = [g,vi] (2.1.6)

for a fixed v;, € V;,. Because p;, is trivial, this is independent of the choice of the
point of the fiber. Therefore, this yields a globally well-defined, nowhere-vanishing
section. In particular, its local representation is given by v;, with respect to any
q € Q, and, thus, also with respect to any local section of Q.

From this we see that the pendant of e on Q is a constant map v, : @ — V;,, ¢ — vj,.
Additionally, p;,« = 0, whence Dgv;, =0V AeC(Q). O

Equivalently, one could choose an arbitrary non-zero element of FE; |, for any x € M

olz
and use parallel transport with respect to an arbitrary connectionlon Q to extend
this to a section of E;,. In particular, in this case E admits a nowhere-vanishing
section. Since these particular sections are parallel with respect to every connection
on O, one often calls them invariant sections.

Thus, we have seen that the existence of G-structures on P implies the existence of
nowhere-vanishing sections on certain associated vector bundles. The only criterion
for the existence of such distinguished sections is how the H-representation decom-

poses into irreducible G-representations.

It will be important for us to also investigate the converse direction here. A nowhere-
vanishing section of an irreducible associated vector bundle of rank k defines a split-
ting of F into a rank-(k — 1) and a rank-1 subbundle. Hence, one could expect that
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2.1 Fiber Bundles and G-Structures

under certain circumstances these subbundles are associated vector bundles them-
selves. But if they are, the structure group has to be reduced since E was irreducible
as associated to P, hence implying the existence of a G-structure on P. The result
is stated in

Proposition 2.1.8: Let (P,m, M, H) be a principal bundle over M, and consider
a K-vector bundle E' =P Xy ) V associated to P. Let there be an element 19 € V
having a non-trivial stabilizer G = {h € H | p(h)(10) = 70}
In this case, E admits a nowhere-vanishing section T € T'(E) such that there is a
covering {(Uj, s;)}ien of M by local sections of P satisfying

Tz = [8i(7),70] VzeU;ieA, (2.1.7)

if and only if there exists a G-structure on P.

Proof. Assume we are given a section 7 € I'(F) and a covering {(Uj, s;)};en with the
described property. First, consider U; n U; = U;; # . On U;; we have

Tz = [8i(®),70] = [s;(z),70] V€U (2.1.8)

There exists a smooth transition map h;; : U;jj — H,  — h;;(z) such that

si(z) = Rp,;(2) sj(x) V€U (2.1.9)
Thus,
e = [8i(2), 0] = [Rpy;(2) 85 (2), T0]
= [s;(x), p(hij(x))(70)] (2.1.10)
= [s5(2), 70]-

Since the map v — [p,v] for fixed p € P is a diffeomorphism (appendix A.1), h;;
takes values in G exclusively.

Now define @ = {p € P |7y = [p,70]}. We will show that this set defines the
required G-structure.

For 7 € A consider the maps

bi 2 Quu, = Ui x G, ¢i(Ry si(r)) = (,9). (2.1.11)

From the above arguments we know that transitions between these maps are given
by smooth G-cocycles. Thus, we endow Q with the differentiable structure induced
by the local trivializations which are given by the ¢;. We see that this is in fact a
principal G-bundle.

The ¢; directly extend to local trivializations of P by ¢;(Rp si(x)) == (z,h). These
are compatible with the differentiable structure of P in the sense that this bundle
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2 G-Structures and Intrinsic Torsion

atlas of P restricts to a bundle atlas of Q. We, therefore, identify Q as a principal
G-subbundle of P and have thus constructed a G-structure (Q, 7, M,G) on P.

If, on the other hand, there is a G-structure @ < P on P, consider a covering
{(Us, si) }ien of M with local sections of Q. As in the preceding corollary, define
Tle = [q,70] V& € M. We saw in the proof of that corollary that this defines a global
section of E. Moreover, 7, = [si(7),T0] Vi€ A, z € U;. O

This proposition shows how the choice of nowhere-vanishing sections with fixed
local representations defines G-structures on principal bundles and vice versa. Note
that often these sections sections arise in tuples. This is because generically there
will be several representations of H whose restrictions to G < H contain a trivial
representation. Each of these will then give rise to a nowhere-vanishing section of
the corresponding associated vector bundle. However, for the sake of simplicity we
chose to treat only one of these sections in the above considerations. Let us finally
give these distinguished sections a name for further reference.

Definition 2.1.9: Be (P,w, M, H) a principal fiber bundle over M and (Q, 7, M, Q)
a G-structure on P which is defined by a section T € I'(E) in the fashion of propo-
sition 2.1.8. Then 7 is called a defining section for Q.

Reductions of (P, 7, M, H) to principal H-bundles can equivalently be defined via
global sections of the associated bundle P x ) H/G [18], where the left-action
¢:H x H— H, {(h1)(h2) = h1hy is the natural left-action of H on itself. However,
we considered it more valuable to investigate G-structures by means of defining
sections in the above way. This view is more directly related with calculations in
later chapters, where we benefit from using the components of the defining sections
with respect to local frames on M.

To sum up, the existence of G-structures of a principal H-bundle, where G is the
stabilizer of some element in a representation p of H on a vector space, is equivalent
to the existence of a section of £ =P x (g ,) V having property (2.1.7).

Returning to the example of a Riemannian metric, O(D) < GL(D,R) is a closed
subgroup defined as the stabilizer of a certain element of V*(R”)*. A Riemannian
metric on M does, of course, satisfy the assumptions of proposition 2.1.8. This is
because everywhere there exists a local orthonormal frame for any given g. The
subbundle Q, as constructed in the proof of this proposition, is just the subbundle
of orthonormal frames as contained in F(T'M). Thus, our formal approach applied
to the motivating example of this section reproduces what we used as a guiding
principle.

In the following we will mostly deal with G-structures on M, instead of on a more
general principal bundle P.
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2.2 Intrinsic Torsion and Classification of G-Structures

We now turn to the study of connections on principal bundles carrying a G-structure
as defined in the previous section. The central issue here is that, generically, connec-
tions on P do not restrict to connections on the principal bundle of the G-structure
Q. In particular, when working with G-structures on M it is not necessarily true
that the Levi-Civita connection of a Riemannian metric compatible with the G-
structure has holonomy contained in G. That is, if Q is given by defining sections,
in general the Levi-Civita connection will not be compatible with the G-structure
in the sense that it fails to preserves the defining sections.

For example, the five-sphere S° with its standard metric carries an SU(2)-structure,
but has a bigger holonomy group. The former will be shown in section 3.4 using
S5 = SU(3)/SU(2).

Being given a connection A on Q, there always exists an extension of A to a con-
nection Ap on P (cf. appendix A.2, [18]). The restriction to Q then yields back
A € C(Q). Thus, there is an embedding

C(Q) < C(P). (2.2.1)

This yields

Proposition 2.2.1: Consider a principal H-bundle (P,7,M,H) admitting a G-
structure (Q,m, M,G). The following two assertions hold true:

(1) Every connection on Q can be extended to a connection on P.

(2) The restriction of a connection 1-form on P to Q is a connection 1-form on
Q if and only if there is a covering {(U;, s;)}ien of M with local sections of Q
such that sfA is g-valued for every i € A.

Proof. We are left to show the second assertion. Consider a covering {(Uj, i) }ien of
M with local sections of Q, and let A € C(P) be a connection on P. We compute

S;‘A = (joi o SZ)*A = AdH(gjzl) o s,zkA + gji*,ug, (2.2.2)

where gj; is the transition map from s; to s;. Hence, the collection (s A);ep has
the correct transformation behavior of a local representation of a connection on Q.
However, as A is a generic connection on P, which has structure group H, s;A
will in general be h-valued, rather than g-valued. Therefore, the collection (sA);ecp
represents a connection on Q if and only if sf A takes values in g forallie A. [

As simple illustration of the second statement is that while every metric connection
on a Riemannian manifold (M, g) is a connection on F'(T'M), not every connection
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on F(TM) preserves g.

While this already states a relation between connections on P and @, for certain Lie
groups we can construct connections on @ from general connections on P. This will
be of importance in the following sections when we consider metric G-structures on
M. These we define to be G-structures on M where G < SO(D) < GL(D,R). That
is, Q is contained in the bundle of orthonormal frames that is defined by a certain
Riemannian metric on an orientable M.

Proposition 2.2.2: Let (P,m, M, H) a principal H-bundle admitting a G-structure
(Q,m, M,G) where the splitting b = g @ m is such that m is invariant under the
action of G via Ady. Denote by pry and pry, the projections of b onto g and m,
respectively, and let A € C(P) be an arbitrary connection on P.
Then

po(A) =prgo Ajg € C(Q) (2.2.3)
is a connection on Q. Furthermore, there is a horizontal m-valued 1-form of type

Adg on Q given by

To(A) = prm o Ajg = Ajg — po(A) € Ry, (Q, m) P44, (2.2.4)

Proof. First, we show that pg(A) is a connection 1-form on Q.
Be £ € g. The fundamental vector field on O corresponding to £ is given by

d d
¢Q(€)|q = &|0Regxp(t£) q = a‘ORZ;p(t&) q = SOP<§)|Q Vq € Q (225)

The second equality holds because Q is a principal subbundle of P. Hence, we have

(&) =¢" ()0 Ve (2.2.6)

Therefore,

Pa(A)g 09 (&) = prgo Ago” (€) = pre(€) =€ VEeg qe Q, (2.2.7)

and pg(A) o 92 = idy is satisfied.

Now consider
R,* (pQ(A)) =prgoAoRy,

=prgo R,*A

=prgoAdy(g ) o A (2.2.8)
= Adp(g~ ") oprgo A

= Adg(g7") o po(A).

Here we used that, as representations of G on g, the restriction of the adjoint repre-
sentation of H to G coincides with the adjoint representation of G. That is, we have

20



2.2 Intrinsic Torsion and Classification of G-Structures

Adp g = Adg as representations of G on g. This is because Adu(g9) = an(g)«e,
where the map ag(h)(a) = hah~! is the inner automorphism of H. The group mul-
tiplication on G and the restriction of that on H to elements of G coincide, whence
Adn(g);g = Ada(g) Vg € G. Also, the fourth equality does only hold true for the
splitting h = g ® m being invariant under the restriction of Ady to G. For m being
invariant under the action of G via Adp, the coincidence of Ady(g) and Adg(g) on
g then yields the invariance of the splitting of h and thereby the fifth equality.
Thus, po(A) is a connection form on Q, i.e. pg(A) € C(Q).

Let us turn to the proof of equation (2.2.4). Since pg(4) = Ajg — (40 — po(4))
takes values in g, the part of Ajg mapping to m is precisely given by Ao —po(A),
which hence is an m-valued 1-form on Q.

Also, as shown in the proof of (2.2.3), A|g and pg(A) coincide on the fundamental
vector fields on @ and hence on the complete vertical tangent bundle of ©. Conse-
quently, Ajg —pg(A) is horizontal.

We are left to check that this form is of type Adg, which is only well-defined on
m-valued forms on @ if m is invariant under Ady restricted to G. From computing

Ry (Ajryq — Po(A)|ryq) = Ry*(AlR,q) — Ry™ (p2(A)r,q)
= Adg(g o Ay —prgo Ady (g™t o Ay (2.2.9)
= Adp(g~") o (A —prgo Ay

we see that Ajg —pg(A) does indeed have this property, thus completing the proof.
Note that in the third equality we have again made use of the invariance of the
splitting of b. O

The first assertion of the proposition has already been proven for example in [18].
For G being a connected Lie group, the invariance property is satisfied if and only
if the splitting h = g @ m is reductive, that is, [g,m|y < m. This is true since for
any Lie group homomorphism ¢ : G — H one can show that ¢ o exp; = expy 0«
(cf. [18]), and since every element of the identity component of a Lie group can
be expressed as a product of elements of any arbitrary open neighborhood of the
identity.

The m-valued 1-form Tg(A) € Q}

hor

(Q, m)(GAdr) has a remarkable property.

Lemma 2.2.3: Consider a principal H-bundle (P, 7, M, H) admitting a G-structure

Q, where the splitting h = g ® m is invariant under the action of Ady restricted to
G. For any A € C(P) we have

prmo (Ajg— A') = To(A) YA €C(Q). (2.2.10)
Thus, for fixed Ae C(P), T'(A) defines a map
T(A): GP — Q},.(Q,m)@4d) 0 s To(A) (2.2.11)
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from the space GP of G-structures on P to QF_(Q, m)(&Adn),

hor

G, Adg)

Proof. C(Q) is an affine vector space over 2} (9, g)! . Recall from the previ-

ous proposition that po(A) € C(Q). From this we infer

po(A) - A' € 0},,(Q,g)( @A), (2.2.12)

Thus,
prmo (Ajg = A') = prio (A1 — pa(4)) + (po(4) — A7)
lued
g-value
(2.2.13)

= prm© (Ao — pa(4))

= To(A),
and the proof is complete. O

Because Tg(A) depends on the choice of a connection on P and on the G-structure
on P only, we can for a fixed Ay € C(P) use To(Ap) in order to classify G-structures
on P.

Definition 2.2.4: On a principal H-bundle (P, 7w, M, H) admitting a G-structure
Q, where the splitting h = g ® m is invariant under the action of Adp restricted to
G, fix a connection Ag € C(P).

Then To(Ao) € Q4,,(Q, m)(GA4H) s called the intrinsic torsion of Q with re-
spect to Ay.

Later on in this thesis, we will mostly focus on metric G-structures on orientable
Riemannian manifolds (M, g). On the bundle of orthonormal frames SO(M,g) of
such spaces we are given a distinguished connection, namely the Levi-Civita con-
nection of g. In this case, we choose Ap to be the Levi-Civita connection and refer
to To(Ap) as the intrinsic torsion of the G-structure on M. This way we recover
the notion of intrinsic torsion used in [20], which will be sufficient for our purposes.
In fact, there is a more general way to define intrinsic torsion on arbitrary frame
bundles used e.g. in [19,21]. In [19], the link to our elaboration is given precisely
by measuring intrinsic torsion of metric G-structures with respect to the Levi-Civita
connection of the given metric.

In particular, the torsion Tgo(Ag) measures how much Ay fails to be a connection on
Q, i.e. how much it fails to preserve the (defining sections of the) G-structure.

Definition 2.2.5: IfTo(Ag) = 0, we say that the G-structure Q is integrable with
respect to Ay. If To(AY) = 0 in the case of metric G-structures on M, where we
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2.2 Intrinsic Torsion and Classification of G-Structures

choose Ay = A9 to be the Levi-Civita connection of the metric compatible with Q,
we just call Q integrable.

For the splitting h = g @ m being invariant under the G-representation Ady, we
have (again in the notation of [18])

Ad(P) =P X (f,4d;) b
=P X(#,4dy) (8@ m)
— 4d(Q) ® Q X (G ady) m (2.2.14)
= Ad(Q)® V.

Here we used lemma 2.1.4 and again the fact that Ady restricted to G coincides
with Adg as a representation of G on g.

In [18] it is shown that on every principal H-bundle P there exists a bijective map
T QF (P, V)G QF(M, P X(a,p) V) for any k € Ny (see appendix A.1 for more
details). Thus, we see from (2.2.4) that ¥(Tg(4o)) € QY(M,V) = T(T*M ®@ V).
If, in particular, we are dealing with G-structures on F(T M), rather than on some
general principal bundle, T*M is an associated bundle of Q as well. Hence, so is

T*M ® V, but it may be reducible as associated to Q. In general, we thus have

T*M ® Ad(P) = T*M ® (Ad(Q) ® Q X (¢, ad;;) M)

= (T"M ® Ad(Q)) ® (2 X (67 @Ady) (R” @m)) (2.2.15)

N
= (T*M ® Ad(Q)) ® P W;.
=1

We take p to denote the standard representation of GL(D,R) on R, and TM is
associated to F(T'M) via this representation. The cotangent bundle is dual to 7% M,
whence it is associated to F(T'M) via the inverse transposed representation p~7.
The method for classifying G-structures on M is then to state in which of the
associated vector bundles W;, i € {1,..., N} the intrinsic torsion ¥(Tg(Ao)) of the
G-structure has non-trivial components.

This idea has been developed in [5], and it has been investigated for metric G-
structures on Riemannian manifolds for example in [20] and as well in [22] and [14],
where in the latter two references applications to flux compactifications are pointed
out.
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Chapter 3

Special Geometric Structures

3.1 SU(3)-Structures in D = 6

In the last chapter we explored the general framework behind G-structures. Here we
specialize to SU (3)-structures and SU (2)-structures on 6- and 5-dimensional mani-
folds, respectively, for we will use these in the constructions of chapters 5 and 6.

Let us begin our introduction of SU(3)-structures by first considering a little more
general structures on even-dimensional manifolds. These will provide us with back-
ground useful in later considerations and computations. The notions used here can
be found in e. g. [17,23].

The most important objects in this section will be the complexified tangent and
cotangent bundle

TM® =TM®C and T*M®:=T*M®C. (3.1.1)
If {e;|i=1,...,D} is a local frame of TM with dual coframe 3, we locally have
TyMC = spancfe;|i=1,...,D}, THMC =spanc{B;|i=1,...,D}. (3.1.2)

On every complex vector space of even dimension there exist complex structures,
i.e. automorphism of the vector space that square to minus the identity. Conse-
quently, if D is even, which shall be assumed for the remainder of this section, we
could construct local complex structures from local frames as given above. As it al-
ways is with non-trivial vector bundles, there may, however, exist no global versions
of these.

Definition 3.1.1: A manifold endowed with a section J € T'(End(T'M)) such that
J? = —1 is called an almost complex manifold. J is called an almost complex
structure on M. It is the defining section of a GL(n,C)-structure on M for D = 2n
in the language of section 2.1.

Such an almost complex structure can be extended linearly to TMC. Since it squares
to the identity, J|, has eigenvalues +i.
By putting

(J*()(X) = p(J (X)) ¥pue QUM), X e D(TM) (3.1.3)
we obtain J* € T'(End(T*M)). Its extension to T*MC also squares to the identity
and therefore has eigenvalues +i.
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3.1 SU(3)-Structures in D = 6

This induces a splitting
T*M® = Eig j« (i) ® Eig s« (—i) = A0 T*M @ A% T* M. (3.1.4)

One may then define AP? T* M and A% T*M as the p-th exterior power of AL0 T* M
and A% T* M respectively. Furthermore, we put

APIT*M = (APOT*M) A (A1 T*M), (3.1.5)
thus introducing the decomposition

ANT*MC = @ APIT*M VEk=0,...,D. (3.1.6)
p+q=k

This suggests the notation QP9(M) = T'(AP21T*M).

However, the existence of an almost complex structure is a weaker condition than
the existence of a holomorphic atlas of M, i.e. a proper complex structure. This is
taken account for in the following definition which includes statements to be found
e.g. in [23].

Definition 3.1.2: An almost complex manifold (M, J) is called a complex man-
ifold if either one of the following equivalent statements holds true:

(1) J is integrable. That is, its Nijenhuis tensor of J vanishes identically, i. e. for
all X, Y e (TM)

Ny (X,Y) = [J(X), T =T ([T(X), YD)~ I ([X, (VD ~[X, Y] = 0. (3.1.7)
(2) The exterior differential satisfies
dQM0 (M) c 02°(M) @ QM (M). (3.1.8)
(8) The exterior differential satisfies
dQ%Y (M) < QY (M) @ Q%2 (M), (3.1.9)
(4) The exterior differential satisfies
dQP4(M) < QPTL(M) @ QPITH(M). (3.1.10)
(5) There exists an atlas for M with holomorphic transition maps.

In a gravitational theory, of course, an additional field is present, namely a metric on
M. Between this and an almost complex structure there can be a fruitful interplay
if the fields are compatible in the following way:
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3 Special Geometric Structures

Definition 3.1.3: A Riemannian manifold (M, g) endowed with an almost complex
structure J is said to be an almost Hermitian manifold if g is invariant under
J, i.e if

9(J(), 7)) = g(-). (3.1.11)

A tuple (g,J) compatible in this sense defines a U(n)-structure on M [17]. An
almost Hermitian manifold is called a Hermitian mantfold if its underlying almost
complex structure is complex.

For computations it will be useful to find local bases of the eigenbundles of J*. Be
(M, g,J) an almost Hermitian manifold. For a local orthonormal coframe 3 on MP
with D = 2n define

W=t ol =p% j=1,...n (3.1.12)
We choose the coframe in a way such that

T (W) = — o’ J*(o!) =47, or

(3.1.13)
J(ezj_l) = €3y, J(ezj) = —€25-1.
Note that for the so-called Kdhler form we have
wi=g(J(),) = D87 AR =Y Aol (3.1.14)
i=1 i=1

The forms {4/ +io7 |j =1,...,n} provide a local basis of T* M€ satisfying
J*(p! +io?) = +i (@ £ 0. (3.1.15)

Thus, this is a basis adapted to the splitting of 7M€ into the eigenspaces of J*.
At some points we will use

07 =yl +iol, 07 =yl —iol =05, (3.1.16)

which satisfy ) )
J(07) =i607 and J(67) = —i67. (3.1.17)

With these definitions,
AY =spanc{#’|j=1,...,n} and A"!= spanc{Qj |j=1,...,n}. (3.1.18)

We now come to the definition of an SU(3)-structure in D = 6. As explained in
section 2.1, a G-structure on M can be characterized in terms of its defining sections.
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3.1 SU(3)-Structures in D = 6

Definition 3.1.4: An SU(3)-structure on a 6-dimensional manifold M is
defined by a quadruple (g, J,w, ), where (M, g,J) is an almost Hermitian manifold
with Kahler form w e QYY(M), and Q € Q39(M) is a nowhere-vanishing (3, 0)-form
on M. These defining sections are subject to the algebraic relations

w(X,Y)=g(J(X),Y) VX,YeT(TM)
wAQ=0, (3.1.19)

QOAQ= —%w/\w/\w.

More precisely, the SU(3)-structure is completely determined by either of the triples
(9,7J,9), (J,w, ), or (g,w, ). This is because (3.1.14) determines one element of
(g9,J,w) from the remaining two. The standard form of w is given in (3.1.14) and

that of Q reads
Q= (8" +iB%) A (B2 +iB") A (B> +ip%)

3.1.20
= (' +io") A (P +ic?) A (1P +io). ( )
We will also make use of the real and imaginary parts of
Q=0"+iQ", Q* (M) (M). (3.1.21)
separately. The standard components of Q" and Q~, thus, read
Ot = B135 . 6146 . ,8236 . 6245
’ (3.1.22)

O = 5136 + 5145 + 5235 _ B2467

where we adopted the shorthand notation g% = 5 A .

It turns out that there are several different types of SU(3)-structures with different
geometric properties. As we indicated in section 2.2, G-structures can be classified
by their intrinsic torsion, and this governs most of their geometric features. In that
section we introduced the notion of intrinsic torsion of a G-structure by means of a
reference connection of the ambient principal bundle. We then pointed out that this
measures how the reference connection fails to preserve the defining sections of the
G-structure. From this we might expect the torsion classes to be encoded in certain
derivatives of these sections. In fact, in the case of SU(3)-structures on 6-manifolds,
the torsion classes can be read off from [14,20]

dw = glm<(W1+ —iWy) Q) + W3+ Wy Aw, (3.1.23)
dQ= (Wi +iW] JwAaw+ (W +iW5 ) Aw+ QA Ws, (3.1.24)

where we use a form of Wj slightly differing from that in e.g. [14]. VVlir are real
functions, Wy and Wj5 are real 1-forms, W;—r are the real and imaginary part of a

27



3 Special Geometric Structures

(1,1)-form, respectively, and Wj is the real part of a (2,1)-form. In addition, both
Wy and W3 are primitive forms, meaning that [14]

w_Wy=0 and w_W3=0. (3.1.25)

The _ is the interior multiplication, or contraction, of two forms. It is defined with
respect to a Riemannian metric, and we use the conventions of [22]. That is, it

o =% A *0), (3.1.26)

such that for example 812 _ 51234 = 334, Note that conformal rescalings leave the
combination 3 Wy + 2 W invariant, and that the structure is complex if and only if
Wi =Wy =0.

With this we can define several special types of SU(3)-structures.

Definition 3.1.5: Let (g, J,w, Q) be an SU(3)-structure on a 6-dimensional mani-
fold M.

(1) (g,J,w,R) is integrable, or Calabi-Yau, if
dw=0, d2=0 < W, =Wy=W3=W4=W;=0. (3.1.27)
(2) One speaks of a half-flat [24] SU(3)-structure (g, J,w, ) if
dwrw=0, dQt =0 < W/ =W =W,=W;=0. (3.1.28)
(3) (g,J,w,R) is called nearly Kdhler if [25, 26]
dw=-32Q", dQ” =2 \wAw (3.1.29)
for some X € R, which is equivalent to

Wi =2\ and Wi =We=W3=W;=W;=0. (3.1.30)

We add an additional note on a special type of U(3)-structures. On any almost
Hermitian manifold (M, g, J) there exists a unique connection preserving this struc-
ture and having totally antisymmetric torsion. This connection is called the Bismut
connection [27,28].

Definition 3.1.6: Kdahler-torsion 6-manifolds are characterized by the torsion of
the Bismut connection being given by

T = Jdw, (3.1.31)

and this being the real part of a (2,1)-form.
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3.2 SU(2)-Structures in D = 5

In this situation, the Bismut connection is then sometimes called the canonical con-
nection of the Kéhler-torsion structure, or the Kéhler-torsion connection. From [28]
one can see that Kéhler-torsion manifolds are complex, i.e. they are a subclass of

Wi =W5 =0. (3.1.32)

In general, their structure group is U(3) rather than SU(3), in contrast to the pre-
ceding types of manifolds. Nevertheless, as an SU(3)-structure is defined by the
data (g, J, ), its principal bundle is contained in an ambient U (3)-structure defined
by (g,J). We may then ask, whether this U(3)-structure is Kéhler-torsion, and if
so, call the SU(3)-structure Kdhler-torsion as well.

We have thus seen, that every SU(3)-structure is contained in a U(3)-structure. The
converse, however, need not be true, as for instance if M is non-orientable. Yet, a
U (3)-structure might be reducible to an SU(3)-structure, and it certainly will be
if it carries a connection with holonomy SU(3). In this case, we could reduce the
U (3)-principal bundle to the holonomy bundle of that connection.

In particular, one may ask whether the Bismut connection has holonomy group
SU(3). For a given SU(3)-structure, we may even consider its ambient U(3)-
structure and investigate whether the Bismut connection restricts to a connection on
the SU(3) principal bundle. This is non-trivial as elaborated on in section 2.2 and
turns out to hold true if the SU(3)-structure is Kahler-torsion in the aforementioned
sense and additionally satisfies

2W, + Ws = 0. (3.1.33)

This result has been obtained for example in [29]. SU(3)-structures which are
Ké&hler-torsion in the above sense and additionally satisfy 2 W, + W5 = 0 are called
Calabi- Yau-torsion. These are the Kéhler-torsion SU(3)-structures for which the
Bismut connection of the ambient U(3)-structure is compatible with the SU(3)-
structure.

In chapter 5, we construct and examine Kéhler-torsion, nearly-Kéhler, and half-flat
SU (3)-structures on 6-manifolds from suited SU(2)-structures in D = 5.

3.2 SU(2)-Structures in D = 5

We introduce SU (2)-structures on 5-manifolds and examine special examples in this
and the following section.

SU (2)-structures on 5-manifolds can be characterized in terms of defining sections
as introduced in section 2.1, similar to the SU(3)-structures in 6 dimensions. For
SU (2)-structures on 5-manifolds, this has been worked out in [30]. There the fol-
lowing result has been proven:
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3 Special Geometric Structures

Proposition 3.2.1: SU(2)-structures on 5-dimensional manifolds M® are in one-
to-one correspondence to quadruples (n,w!,w?,w3), which consist of n € Q*(M) and
whe Q2(M) Yi = 1,2,3 satisfying

, , g 1
w'Aw =26YQ forQ = §w3 A w? e QY M), (3.2.1)
nAQ#0 and (3.2.2)
ixw® = —iyw? = WwH(X,Y) = 0. (3.2.3)

Note that our choice of order and signs of the forms differ from that in [30]but
the formulas are adapted accordingly. The main reason for our choice will become
obvious from the next proposition.

Equivalently, the defining sections single out frames of T'M that are elements of a
principal SU(2)-subbundle of F/(T'M). As presented in proposition 2.1.8, the SU(2)-
structure consists of precisely those frames, in which the defining sections (7, w?)
have certain standard components. These components have first been written down
in [30], and with a slight relabeling and change of the sign of 3° the result is

Proposition 3.2.2: SU(2)-structures on 5-dimensional manifolds M® are in one-
to-one correspondence to quadruples (n,w!,w? w3), consisting of forms n € QY(M)
and w' € Q2(M), i = 1,2, 3 such that around every x € M there is some open neigh-
borhood U < M and a local frame e € Ty (F(TM)) with dual coframe [3, expressed
in which (n,w!',w? w3) take the standard form

n= -5,

W= B A B+ B2 A B
W= — B A B+ B2 A B
W =B A B2+ B3 A B

(3.2.4)

With this convention for the defining forms and making use of the 't Hooft tensor
N%e = €%eq + 05 Oca — 68 Ops,  a,byc=1,...,4 (3.2.5)

(not to be confused with the 1-form 7)) as in [31], we can unify the standard forms

of the w' as

1
W = S B A B a =123 (3.2.6)

Note that since SU(2) can be embedded into SO(5), there also is a Riemannian
metric g on M which takes its standard form in the bases that constitute the SU(2)-
structure.

30



3.8 Sasakian Structures

Similar to the case of SU(3)-structures in D = 6, there are special types of SU(2)-
structures in D = 5. These are singled out by certain conditions on the differentials
of the defining forms. We define them as in [24], but with signs adapted.

Definition 3.2.3: Consider an SU(2)-structure on a 5-dimensional manifold M®
defined by (n,w!, w?,w?3) .

(1) The SU(2)-structure is said to be hypo if

dw® =0, dinawh)=0, and d(nAw?) =0. (3.2.7)
(2) It is called nearly hypo if

dw' = =3nAw?  and d(n A w?) =20 AWl (3.2.8)

(8) The SU(2)-structure is double hypo if it is hypo and nearly hypo.
(4) An SU(2)-structure is defined to be Sasaki-Einstein if
dn=2w?, dw'=-3nArw? and dw?=37nAw (3.2.9)
Clearly Sasaki-Einstein SU(2)-structures are double hypo, but the converse does not
necessarily hold true.

After this exposition of SU(3)- and SU(2)-structures in D = 6 and D = 5, re-
spectively, we go more into the details of Sasakian and Sasaki-Einstein manifolds.
Study of the former structures will provide us with valuable additional knowledge
about the rich structure of these manifolds. The richer a structure there is on a
manifold, the more objects there are whose effects can be interwoven in explicit
constructions. However, we must not be too restrictive in order not to rule out too
many phenomenologically viable classes of manifolds.

3.3 Sasakian Structures

First, we collect the characterizations of Sasakian structures used in e. g. [17] or [32].
We take from [17] the following two definitions and the subsequent theorem, adapting
them to our conventions for differential forms, which coincide with the ones of [32].

Definition 3.3.1: We define the following geometric structures on a manifold MP
of dimension D = 2n + 1:

(1) First, a contact structure is defined by a 1-form n € QY (M) having the
property that
(n A (dn)”)|m #0 VxeM. (3.3.1)
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(2) An almost contact structure on M is given by a triple (n,&, ®), where
ne QY M), Ee T(TM) and ® € End(TM), satisfying the relations

nE) =1 and & =-T+nQE. (3.3.2)

(3) We define a metric almost contact structure on M to be a tuple (g,n,§, ®),
where (n,€, ®) is an almost contact structure on M and (M, g) is a Riemannian
manifold compatible with the almost contact structure in the sense that

g(P(X),2(Y)) =9g(X,Y)—n(X)nY) VX, Yel(TM). (3.3.3)

(4) A metric almost contact structure is called normal if the lift of ® to the metric
cone over M induces an integrable almost complex structure. This turns out
to be equivalent to

Le® =0 (3.3.4)

(5) A metric contact structure on M is a metric almost contact structure
(9,m,&, D) on M such that n is a contact form with

dn =2g(®(-),). (3.3.5)

(6) A metric contact structure is defined to be K-contact if its Reeb vector field
s Killing.

(7) Finally, a normal metric contact structure is called a Sasakian structure.

Note that we use the conventions of [32] regarding the exterior differential and wedge
product, thus requiring the 2 in (3.3.5).

In particular, we see from this definition that on a metric almost contact manifold &
always is of unit length. Thus, around every point « € M there is a local orthonormal
frame such that

{¢=—-ep, n=-pB" and &= Z B~ &K eg; — B & e25-1. (3.3.6)
j=1

Also, £ Ly ker(n).
Other characterizations of Sasakian manifolds that may be helpful are the follow-
ing [17].

Proposition 3.3.2: Let (M, g) be a Riemannian manifold and V9 its Levi-Civita
connection. Then the following properties are equivalent:

(1) There exists a Killing vector field & of unit length on M such that the tensor
field ® € End(TM), ®(X) = V%E satisfies

(V9®)(Y) = g(&, V)X —g(X,Y)¢ VX, Y e (TM). (3.3.7)

32



3.8 Sasakian Structures

(2) There exists a Killing vector field & of unit length on M such that the curvature
2-form R € Q*(M, End(TM)) of VI satisfies

R(X,(Y) =g(&,Y)X — g(X,Y)¢ VX, Y e (TM). (3.3.8)

(8) The metric cone (C'(M),g) = (M xRy, dr® + 12 g) with w = % dn+rdrAn
is Kdhler.
(4) (M, g) is Sasakian.

Depending on the situation, we can choose one of the above equivalent characteriza-
tions in order to check whether or not a manifold is Sasakian. But we can also prove
another characterization of Sasakian structures, which is similar to the known above
ones, but might be interesting nevertheless. This will be of help when searching for
the connections with reduced holonomy on Sasakian manifolds. To make the proof
of this characterization easier to read, we state two technical lemmas first:

Lemma 3.3.3: Be (M, g,&,n,®) a manifold endowed with a metric contact struc-
ture, and be (Cy(M),g) = (MxI,dr? + ¢(r)? g) its ¢-cone. I = R is some (open)
interval, on which the smooth function ¢ : I — Ry, r+— ¢(r) is defined.

In the fashion of [32], denote by V(. »y = ¢(7) Or|(rz) the adaption of the Euler vector
field to Cy4(M) and by V' its dual 1-form. Define

J:<I>G-)(\I/'®§—n®\ll)=(I)(—B(dr®;f—¢n®dr). (3.3.9)

Then, (Cy (M), g,J) is an almost Hermitian manifold and its Kahler form is given
by [32]
1
w=3 $*dn + ¢dr A . (3.3.10)

Proof. Tt is immediate that J? = —I. Be X,Y € I'(ker(n)). We compute

gJ(X),J(Y)) = ¢ g(D(X), B(Y)) = ¢* g(X,Y) = §(X,Y),
9(J(§),J(X)) = 0= g(§, X),
g(J(¥), J(X)) = ¢* g(&, ®(X)) = 0 = g(¥, X), (3.3.11)
9(J(£),J(¥)) =0 =g(£, V),
g(J(£),J(€) = ¢* = g(¢,€) and
) = 6% = g(¥, ")

Thus, (C(M), g,
cally given by
w(--) =g(J(),"). (3.3.12)
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Be X,Y e I'(ker(n)). On the ¢-cone of M this yields

w(X,Y) = g(J(X),Y) = g(®(X),Y) = ¢ 9(2(X),Y)

¢ ¢?
- S aney) = (oar ans an) ()
w(ﬁ,X) Zg(J(é),X) =—§(\I’,X)=O (3'3‘13)
2
- (sdrnn+ G an)e ).
¢2
w(¥, X) =9g(§,X) =0= <¢d7“ AT 2d77>(‘1/,X),
and, finally,
) 2
GEW) = () = ~0 = (o0 an+ G an)€ . (319
Hence, for this choice of a complex structure on Cy (M),
¢)2
w=a¢dr nn+ 5 dn. (3.3.15)
This proves the statement. O
From the expression for w we see that it will be a closed 2-form for ¢(r) = r.

However, J is not integrable in general, whence the metric cone fails to be Kéhler
in the generic case. This illustrates, how Sasakian manifolds are more special than
metric contact manifolds.

The second lemma is generalized from [32] to the ¢-cone, as it is stated there for the
metric cone only, and we aim to consider sine-cones, for instance, later on.

Lemma 3.3.4: Let (M,g) be a Riemannian manifold and (Cy(M),g) its ¢-cone.
Then, for X, Y e I'(TM) and ¥ as above, we have

VW =00V,
ViV =V X =06X and (3.3.16)
VLY =V4Y —d.09(X,Y) 0.
Proof. With [¥, X] = 0 and d¢(X) = X(¢) = 0 VX € I'(T'M), we obtain from
Koszul’s formula that
29(V4 Y. Z) = 20 g(V& Y, 2) = 25(V% Y, 2),

- ; (3.3.17)
29(V4XY,0r) = — Lo (67 g(X,Y)) = =26 0,0 g(X,Y).
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From this we take )
VL&Y =V4Y —0.09(X,Y) 0. (3.3.18)

Furthermore, also from Koszul’s fomrula,

29(VY U, W) = Ly(¢%) =2¢ 0r¢p = 20,0 g(T, V),
25(V9 ¥, X) =0,
v (3.3.19)
29(Vy X, ¥) =0,
25(Vy X,Y) = Ly(6*g(X.Y)) = 28,6 5(X,Y).
Hence, ) )
VI X=06X=V%T and
v * (3.3.20)
VLU = 0,00,
This proves the lemma. O

We now come to the alternative characterization of Sasakian manifolds.

Proposition 3.3.5: A metric contact structure is Sasakian if and only if it is K-
contact and satisfies

V9 (dn) = 2by(X) A ¥ X eD(TM). (3.3.21)

Proof. Assume we are given a metric contact structure (g, &, n, ®) on M. Recall that
these defining sections satisfy

() =0 and dyp(X,Y)=2¢(®(X),Y) VX,YeD(TM). (3.3.22)

Let us consider the metric cone (C(M),g) = (M xR, ,dr? + r?g) over (M,g). It
is endowed with the Euler vector field ¥, almost complex structure J, and Kéhler
form w as constructed in lemma 3.3.3. From this it is clear that (C (M), g, J) is an
almost Hermitian manifold. Moreover, recall that w constructed this way is closed
on the metric cone. Thus, we are left to prove the integrability of J.

We may, however, take another route and use the fact that the structure on M
is Sasakian if and only if its cone is Kéhler (see proposition 3.3.2). For example
from [17], proposition 3.1.9, we take that an almost Hermitian manifold (M, J,g)
is Kéhler if and only if its K&hler 2-form is parallel with respect to the Levi-Civita
connection of g. We, therefore, investigate under which conditions V9w = 0.

The covariant derivative V9w is defined by means of the Leibniz rule on the tensor
algebra, i.e. for all X,Y,Z e I'(T'C(M)) we have

Lx(w(Y,Z)) = (V% w)(Y,Z) +w(VL Y, Z) + w(Y, V% Z). (3.3.23)
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Consider X,Y, Z € I'(TM). Using (3.3.10) and lemma 3.3.5 we compute
g r? L od 1 g
(V5 w)(Y.2) = Lo, (5 dn (Y. 2) ) = ~w(V§ Y. 2) - ~w(Y,V§ 2)
1 1
=rdn(Y,2) = - d(r*n) (Y, 2) = o d(r*n) (Y, 2) (3.3.24)
=0,

(VS w)(Y,¥) = Lo (rdr an (Y, 1)) — %w(Y, W)

= —2rp(Y) — % (rdr A n(Y,T)) (3.3.25)

=0,

_ 7,2
Vi) (.2) = £x (G an(v.2)
(VY (X Y)W, 2) — V.V Z (X, 2)0)

(V% dn)(Y,Z2) — g(X,Y)w(¥,2Z) + g(X, Z)w(Y,¥) (3.3.26)

[ Se v T

= 5 (Vi dn)(Y; Z) - r?9(X,Y)n(Z) + 1% g(X, Z)n(Y)

1,,2
= E <(V§( d?]) +2n A bg()()> (Yv Z),

(V% w)(¥,Z) = Lx(rdr An (¥, Z))
—w(X,Z) —w(V, V% Z —g(X,2) )

7“2

=rLx (n(Z)) - 5 dn (X,Z) —rdr Ann(¥,V% 2) (3.3.27)
2
,
=rLx (0(2)) = 5 dn (X, 2) = r*n(V 2).
Here we make use of n(X) = ¢g(¢,X) VX e I'(TM) and

A1 (X, Z) = X (1(2))— Z(u(X)) ~ p([X. Z]) ¥V X, Z € T(TM), pe Q' (M), (3.3.28)

as well as Koszul’s formula. Thereby, we obtain

(V& )W, 2) =+ (cx<g<f, 2)) — 5 (Xn(2) ~ (X)) ~n([X. Z])  (33.29)

2
+ L (96, 2)) + £2 (€. X)) — Le (9(X. 2) (3330
~ (X126 + 9(Z.[6.X]) + o6 [X. 2D) (3.3.31)
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2

N % (‘Cf(g(X> 2)) = 9(X, LeZ) — g(Le X, Z)) (3.3.32)
T2
- (e (x.2). 533

Thus, the almost Hermitian structure on the cone is Kéhler if and only if £ is Killing
and

(V% dn) =2by(X) An VX eD(TM). (3.3.34)

Therefore, the properties demanded in the statement of the proposition are equiva-
lent to M being Sasakian. O

The reason that this characterization might be interesting is that from the proper-
ties stated in the proposition one can very directly construct a connection preserving
the Sasakian structure. This yields the characteristic connection of Sasakian man-
ifolds introduced in [28]. As the Levi-Civita connection of g does not preserve the
structure, one can, in particular, infer that Sasakian structures are not integrable in
the sense of section 2.2. This is reflected in the fact that Sasaki-Einstein structures
can be defined by Killing spinors as defining sections. As their Killing constants are
i% [17], these are not parallel with respect to V9.

Additionally, note that generically Sasakian structures on (D = 2n + 1)-dimensional
spaces are U(n)-structures rather than SU(n)-structures [17]. We will make use of
the latter in our constructions later on.

3.4 Example: The 5-Sphere

The 5-sphere S° provides an example of a manifold which is non-trivial on the one
hand, but which carries much geometric structure on the other. Therefore, it is a
good candidate for model building of mathematical structures as well as for special
solutions to higher-dimensional physics.

The 5-sphere can be represented as the coset space [33]

_ SU@3)
S SU(2)

(3.4.1)

This can be seen as follows: SU(3) acts smoothly and transitively on the set of
3-dimensional complex vectors of unit norm [33], which can be identified with S°.
The stabilizer of, for example, the vector v = (0,0, 1) € C? under this SU(3)-action
are those elements of SU(3) having (0,0, 1) in their first column. For such a matrix
to be unitary, it is necessary that these also are the entries of its first row. So, it
must be a block-diagonal matrix (A, 1) € SU(3), which requires A € SU(2). Since
every matrix of this kind leaves v invariant, SU(2) is the stabilizer of the SU(3)-
action under consideration and S° does indeed coincide with the homogeneous space
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SU(3)/SU(2).

Because of this way of describing S°, we may employ some of the mathematical
structure of cosets, which we now turn our attention to. First, it is important that
every coset M = H /G can be seen as the base of the principal bundle (H, 7, H/G, G).
On the total space, namely on the Lie group H, elements of h give rise to globally
defined, left-invariant vector fields and their dual left-invariant 1-forms. We can
pull these 1-forms back to the base in order to obtain local coframes with special
properties. For this purpose, be {(Uy, o)) }aen a covering of M with local sections of
(H,m,H/G,G). Let I1,..., Igmm) be a basis of h and o, ..., 0%mH) the induced
left-invariant 1-forms on H.

The Lie algebra of H splits into h = g @ m as in section 2.2. We arrange the gener-
ators of h such that m = spang{li,...,Ip} and let small indices a,b, ... run from 1
to D, as well as small indices i, j, ... from D+ 1 to dim(H). Capital indices A, B, ...
are assumed to run from 1 to dim(H). Then the pullback of the coframe on H to
M is given by ﬁf\‘ = o) * 4.

For the 3¢ to yield local coframes on M, we should first establish their linear inde-
pendence at every point of Uy. This is achieved by recalling that the o) are local
sections of the principal bundle H, thus implying 7* g{ = (o o 7)* 6% = 6 on G.
Therefore, dim(spang{Bs,...,52}) = D.

In order to construct global fields on M from the local pullbacks of these forms, we
need the relation between the ﬁj\“ = 0,* 04 with respect to different local sections
oy of H. Let us, therefore, briefly investigate the transformation behavior of the 63\4
upon change of o). The general result is

Lemma 3.4.1: Consider a homogeneous space MP = H/G and 53\4 = o\ 04 as
described above. Then, for p, X € A such that U, # & and 0, = Rgooy on U,y, we
have

_1\A
Bile = Adu (9(x)™1) "5 BY |, + 0% 00 0 0" g oy (3.4.2)

where ¢ : g — T(TVH) assigns to & € g the fundamental vector field on the principal
bundle, and ug is the Maurer-Cartan 1-form on G.

Proof. From [18] we take the formula

(Rg © Up)* lz = (Rg(x))* C0px|x +t@o g*MG |z (343)

Thus,
ﬁPAWE = ((Tp* 914)‘96 — 9o (Rg 00N\« |z (3.4.4)
= (Ry())* 0%) 0 0rs o + 0% 00 0 g iy o
Denote by Eu, ..., Egim(m) the set of left-invariant vector fields on H generated by
the I4. Since the right-action of G on the principal bundle coincides with the right
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multiplication on H, we may compute

d d
Ry (EAIh) = &mRexp(UA)g h = &‘ORgg*eXP(tIA)g h

d d 3.4.5
= amReXP(AdH(g_l)(tIA)) (hg) = amReXP(tAdH(Q_I)BA In) (hg) ( )
= AdH(g)BA EB\hg-

This is the left-invariant vector field associated to Adg(g)(L4)-
Now consider the dual 1-form. Because of

1A
(Ry 01)n(EB) = 0" (Rgs (Epyp)) = Adp (9(2) )" (3.4.6)
we must have N
R} 04 = Ady (g(x)™1)" 0" (3.4.7)
By the linearity of the pullback, the statement follows. O

Corollary 3.4.2: In the situation of the preceding lemma, be I,, a =1,...,D a ba-
sis of m, where h = g@ m. The left-invariant 1-forms associated to these generators
transform as

ﬁzu = AdH (g(aj)il)aB 6){3@7 (348)
where also B =1,...,dim(H).

Proof. This is because the left-invariant vector field generated by £ € g b on the
Lie group H coincides with the fundamental vector field ¢(&), generated by £ on the
principal fiber bundle H. The reason for that is that already the right multiplications
by elements of G coincide on H for the two points of view.

Furthermore, every 0% a = 1,..., D vanishes on F4 as long as A # a. Recall that
the structure group of the principal bundle under consideration is G, whence g*ug
takes values in g exclusively. Therefore, its composition with ¢ yields vector fields
that are linear combinations of the E; only, whence

0" oo g*ugs = 0. (3.4.9)

This leaves us with the purely homogeneous transformation law. O

For a reductive homogeneous space and connected G this can be restricted further
to

B2 = Adu (9(x) )", BY 1o (3.4.10)
Thus, we have established that the 8 may serve as local coframes on M, and we also
have examined the relation between different coframes of this type. In the reductive
case we have seen that there exist local covers of M = H /G with local coframes 3,
that are related by transformations matrices from Adgy(G). Hence, we have
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Corollary 3.4.3: A reductive homogeneous space M = H/G is naturally endowed
with a G-structure. The group homomorphism from G to GL(D,R) is given by

g+ (AdH(g))|m

Now we would like to go one step further. That is, for compact Lie algebra b the
local coframes constructed above can be used to define a pseudo-Riemannian metric
on M.

To see this, note that a compact Lie algebra splits as h = g@m, where now m = g+x
with respect to the non-degenerate Cartan-Killing form K on h. We may then
choose (I, ..., Igim(r)) to be an orthonormal basis for K. Since K is preserved by
the adjoint representation, and since for reductive splittings h = g @ m both of the
subspaces of f are invariant under Adp restricted to G, the matrices Adg(g)%, lie
in O(p, q), where (p, q) is the signature of K restricted to g.

Hence, the transformations (3.4.10), linking different coframes of the above kind
to each other, are in fact orthonormal transformations. This implies that the set
{(BL,...,B2)}ren defines a principal O(p, ¢)-subbundle of F(T*M) and, therefore,
a pseudo-Riemannian metric of signature (p, q) on M.

After these general considerations we turn our attention back to the example of
S° = SU(3)/SU(2). For the above considerations to apply directly, we should start
by isolating su(2) as contained in su(3).

To this end, we can choose the su(3) generators I,,...,Is such that the structure
constants become

F6_ _F6_ FT_ _FT_F8_ _F 8_
I31 foa J14 Jo3 J12 J34 72\/?
1
\/ga

~ ~ 1
f125 = f345 -~y

for® = (3.4.11)

These are completely antisymmetric with respect to permutations of all the indices,
since this is an orthonormal basis for the Cartan-Killing form of su(3) as used in the
general setup before. That is, fABC = —fACB and so on, where A, B,C =1,...,8.
All structure constants with indices that are not a permutation of the ones listed
above vanish. The su(2)-subalgebra is spanned by I, I7 and Is.

Now, we introduce a two-parameter family of SU(2)-structures on S° by rescaling
the generators of su(3). Consider

_1 .1
Iy~ Io= 51, 15—>15=;15, L -1 =1I (3.4.12)

for (v,0) € Ry x (R\{0}). (Flipping the sign of v does not define a different SU(2)-
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structure.) The structure constants are changed as follows:

~ 1 ~ - v o=
b b b 5 5 5
f5a '_)fSa :§f5a ) fab _)fab :ﬁfab )

ra i Iz 7 7 4.1
fab '_)fab :ﬁfab’ fiab'_)fiab:fiabv (3 3)

fz‘jk = fijk = fz]k

A rescaling of the generators of su(3) rescales the left-invariant vector fields and
1-forms on SU(3) accordingly, and this is propagated to the coset via the pullback
as used before.

From the structure constants (3.4.11), we see that this example is indeed reductive.
Moreover, SU(2) is connected (it is well known that SU(2) ~ S3). Therefore,
(3.4.10) applies to the coset reduction S® = SU(3)/SU(2). In addition, note that
rescaling the generators and, thus, also the 3§ does not affect the transformation law
(3.4.10), whence these coframes still furnish a Riemannian metric on S° for every
(7,0) € Ry x (R\{0}). The infinitesimal versions of these transformations are given
by the structure constants f,5¢ = adg(14)” 5. This provides enough access to the
finite transformations as to investigate globally non-vanishing differential forms on
S5,

At first, in (3.4.10) there is no structure constant having an index i € {6,7,8} and

one index equal to 5. By the connectedness of SU(2), Adgy(3)(g) acts trivially on
B3 for every g € SU(2) and X € A, whence

no, = —B. AEA (3.4.14)

is a well-defined, globally non-vanishing 1-form on S°.

There are global 2-forms as well, which can be constructed in a similar manner.
Consider a combination 3§ A BS’\ = B ®B§\ — Bf’\ ®p3%. The transformation of a tensor
product reads

By ® By = Adsys)(97')" Adsus)(97')"a B @ B3 (3.4.15)
With g = exp(e I;) the infinitesimal version of this is
Br® B = B @8 —e(fie” B @B+ fia B ®BL) + O, (3.4.16)

Thus, we obtain the infinitesimal transformation
0=(By A By + By A Ba) = = Fia B A BR = f? B~ BR 3417)
- fz’a3 B A ﬂ§ - fib4 ﬂi A 52-
Inserting e.g. i = 6 yields
—0:(B, A By + By A By) = fos' B A B+ foa® B B
+ for® B A BA+ fo2" B A B3
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IR TR T P

_( 2ﬁ+2\/§>5AA5A (3.4.18)
1 1 1 4

*(m‘m)ﬁ““

The structure constants are such that this is completely analogous for i = 7,8 and
permutations of the 8%. This implies that the 2-forms defined via

1
W= S Bl A B Ya=1,23, (3.4.19)

are globally well-defined and nowhere-vanishing. From now on we suppress the index
A of the covering of S°. Since (n,w®) are globally well-defined and there exist local
coframes on S® around every x € M such that these forms have components as
in (3.2.4), we arrive at

Corollary 3.4.4: The tuple (n,w!, w?,w?) defines an SU(2)-structure on S° for all
values (v,0) € Ry x (R\{0}). That is, we have constructed a two-parameter family
of SU(2)-structures on S°.

The SU(2) structures induced for different values of the parameters v and § are
indeed inequivalent, since the SU(2)-transformations on the forms cannot generate
the rescalings considered in (3.4.13).

We now investigate whether there is a subset of this two-parameter family of SU(2)-
structures on S® which even is an example for some of the special geometric struc-
tures introduced in sections 3.2 and 3.3. To this end, we compute

1
dy = —d(0*0°) = — 0" (A6°) = 3 fap® " A 7 = s, (3.4.20)
For the following computations we use the notation fA41-Ay = g4t A . A gAN,
dw; = —dB' A B+ 8 A dB*+dB% A B2 — B2 A dB°

1 4254 1 4284 1 364 4 4153
= —fo5 B —fog BT —f36 BT+ fs37 B
4 5162 4 5138 2 5513 2 2463
+ fea” BT H f3s" B = f51° B — fag” B
2 813 3 4245 3 5261 3 4284
— fo1° B+ fus” BT+ fo1” BT+ fa” B

(fos* + f15°) B2 + (fas " + f13”) B2 + (fas" + foa?) B34 (3.4.21)
+ (fss' + f152) B + (fas? + 1) B0 + (fag* + f1s?) B

_ i(_55z4 + 5513)
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1
= —N AN wa.

Analogously,
dws = —dB' A B3+ B A dB2 +dB2% A B — 5% A dB?

1 253 1 4283 1 Q743 3 4145
= fo5" BT+ fog B+ fry BT — fu5” B
3 4172 3 5184 2 5514 2 374
— [ B =S BT =[5 B = f” B

2 814 4 7253 4 217 4 238
—fa1" B [T BT+ i BT+ f3sT B

= (fs2" + fa5) B2 + (fao ' + f3s™) B2 + (far! + f5r7) B2 (3.4.22)
+ (fsu® + F152) B + (F2® + fu ) BT + (fod® + f1s7) B

1
_ > (8523 + gL
= — —N AWl

From this we see that the SU(2)-structure we are considering is hypo for any values
of v and 9§, and nearly hypo precisely for

1 1
8) = (—f,i—). 3.4.23
o) = (- 555 (3429
Hence, for these values the SU(2)-structure is double hypo, and, as it turns out, it
is even Sasaki-Einstein.

It is also interesting to ask which values of the parameters furnish a Sasakian struc-
ture on S°. From the fact that we can always choose a coframe adapted to the
SU (2)-structure in the sense that n = —3% and w® = B A B2 + B3 A B4, we can
construct £ and ® such that (M, g,&,n) is an almost metric contact manifold. That
is, every SU(2)-structure in 5 dimensions is contained in an ambient U(2)-structure,
similar to what we encountered for SU(3)- and U (3)-structures in 6 dimensions. Re-
call from definition 3.3.1 that if in addition dn = 2 g(®(-),-) holds true, (M, g,&,n)
is even a metric contact manifold. This is the case for

v = —46% (3.4.24)

Of course we still have to check whether or not the metric contact structure is
Sasakian. That is, we have to check whether the arising metric contact structures
are normal, i.e. whether £ ® = 0. Recall that

®=p'Qe—f®e+p Qes— ' Qes. (3.4.25)
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Also, by applying 34 to [ep,ec] we obtain [ea,eg] = f45° ec. Additionally em-
ploying that on Q*(M) the Lie derivative satisfies

Lx =txod+dowx YVXel'(T'M), (3.4.26)
we compute

Lo, ®

Les(ABY) @ €2 + B' @ [e5, €2] — te; (AB%) @ €1 — B2 ® [es5, €1]
+ 165 (AB°) @ €4 + B° ® [e5, 4] — tes (AB*) @ €3 — B @ [es, €3]

= - (f521 + f512) 52 ez + (f521 + f512) 51 ®eq (3.4.27)
— (fsa® + fs) B @ea+ (f5i + f53") B @es

= 0.

While (g,n, ®,€) is a normal metric almost contact structure for arbitrary choice of
~ and 4, it is a metric contact structure only for v = —4 62. Since the metric contact
structures obtained this way are even normal, this yields one-parameter family of
Sasakian structures on S°.

In summary, we have constructed a two-parameter family of hypo SU(2)-structures
on S° = SU(3)/SU(2). Each of these gives rise to a normal metric almost con-
tact structure on S°. Within this family, there lies a one-parameter family of

Sasakian structures given by 7 = —462. This subfamily is Sasaki-Einstein for
(v,0) = (—%, iﬁ), which is also the only choice of the parameters that makes

the SU (2)-structure nearly hypo and, therefore, double hypo.

However, the coset construction of S® as considered here allows to make some of
the geometric structure carried by the 5-sphere explicit, and to get a grasp of the
interplay of the different geometric structures introduced in this chapter.
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Chapter 4

Geometry of Instantons

4.1 G-Structures and Instanton Conditions

This section is devoted to the interplay of metric G-structures and gauge theories.
We follow [2,12] in this and the subsequent section. However, we fill in the details,
which will enable us to prove the statements of section 4.3. These in turn will have
valuable applications in the construction of instanton solutions in chapter 6.

In addition to the frame bundle of M we now consider an arbitrary principal H-
bundle (8,7, M, H) over M. This is the principal bundle of a gauge theory on
M. Assume there exists a metric G-structure on M, i.e. a reduction of the bundle
F(TM) to a principal subbundle Q@ ¢ F(T M) with structure group

G < SO(p,q) € GL(D,R). (4.1.1)

We can, thus, always construct a (semi-)Riemannian metric g on M such that the
local frames adapted to Q are orthonormal frames for g. Hence, O is contained
in the ambient principal SO(p, ¢)-bundle SO(M,g). The existence of a metric G-
structure on M does, of course, not reduce the set of possible connections on any
gauge principal bundle (8, 7, M, H). However, we will see that one point where the
two geometric structures given by a connection on 8 and a metric G-structure on
M touch is A2T*M.

The geometry of the instanton equation is footed on the existence of a special iso-
morphism of vector bundles over semi-Riemannian manifolds. This is yet of purely
algebraical origin, as we will explain in the following.

Let us fix some notation first. Consider R” endowed with a non-degenerate inner
product v of signature (p,q), p+q = D. Be (v;);=1,..p an orthonormal basis and
(Hi)i=17.,,,D its dual basis of (R”)*. We put

v = 4, (6) = 77 0 € R,

, (4.1.2)
01' = bfy(vi) = P)/ij 93 (S} (RD)*
Embedded into GL(RP), a basis of so(p, q) is given by (cf. [34])
(BV =0"®@v —0' @' |1 <i<j< D} (4.1.3)

That is, with respect to the basis (vi)izly‘_”D of RP the E" have components

(B9, = (35470 — 6] 4. (4.1.4)
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Also, note that if p : G — GL(V) is a representation of a Lie group G on a finite-
dimensional real vector space V, the representation of G on the dual vector space
V* is the inverse transposed representation

p TG — GL(V*), p"(9) = (p(9)™")" = (p(9)") ", (4.1.5)

and we have

j - i —1\T (pi —1\i pj
p(h) (vs) = p(hYv; and T (R) (0%) = (p(h~1)" (67) = p(h™1); 0. (4.1.6)
The fundamental statement here is the following lemma:

Lemma 4.1.1: In the above situation, the isomorphism of vector spaces

Ify :Sﬂ(p, q) i AZ(RD)*, 17(5 Wij EZJ> = iwij 0" A 6. (417)

is an intertwiner of the adjoint representation of SO(p,q) and the representation
p T @p~T of SO(p,q) on A*(RP)*.

Proof. Be h € SO(p,q) and p(h)ij = hij the standard representation on R”. From
the fact that SO(p, q) preserves v we obtain

(p(h™1)"; = (W71 = v A" = byt (4.1.8)
That is,
p~T(h)(0") = h, 67 (4.1.9)

Since group multiplication on SO(p,q) coincides with matrix multiplication, the
adjoint action can be written as

(Ad(h)(EV))®, = (h EY h™1)%,
= h% (67" - 5% 7 by
_ haj hbi . hai hbj
= By hyd (3 7™ = 3 )
= (hnl hmj Enm)ab
—1y\% —1\\J nm) ¢
= (o)’ (B, E™™)

(4.1.10)

.
Note that the SO(p, q) property (4.1.8) is crucial here, i.e. this does not extend to
any larger subgroup of GL(D,R) (actually, the property (4.1.8) holds for O(p, q),
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but we also need the special form of all the generators of the Lie algebra (4.1.3), as
we used it in the above computation). Thus, putting £7* = —E% for j > i,

1 o
I (5 i b ) E™™)
1

= 5 wij hni hmj 0" A 0’"

L, (Ad(n) (% wig BY))

. | | (4.1.11)
— i p(h) T (6%) o) T ()

<p(h)—T ® p(h)—T) (% wij 0 A 0]’).

This shows that I, is an intertwiner as stated. O
This algebraic assertion has an important consequence for the geometry on M.

Corollary 4.1.2: On any semi-Riemannian manifold (MP,g) the intertwiner L,
induces an isomorphism of associated vector bundles in the following manner.

Let e e Ty (SO(M, g)) be a local orthonormal frame of TM with dual local coframe
B. With notation as above, there is an isomorphism of vector bundles defined by

I, Ad(SO(M, g)) — N*T*M, Iy([e,w]aq) = [e, Iy (w)]p2 - (4.1.12)

That is,

Ig<[€, 2WijEj]Ad> = [6, 5&)7;]'0 A 9]]/\2 = 50.)1']',6 A ,8‘7. (4113)

Proof. We have to show that the prescription (4.1.12) yields a globally well-defined
isomorphism of the two vector bundles.

First, linearity of I, follows directly from the linearity of I,. Also, I, projects
down to the identity on M, whence for every local orthonormal frame e the local
representation (4.1.12) of I, is smooth.

It remains to be shown that these local representations of the action of I, form a
globally well-defined map. Consider another local orthonormal frame € such that e
and € are defined on some mutual open subset U of M. There is a smooth transition
map h : U — SO(p,q), z — h(x) such that &, = Rj,)e(r) Vo € U. By the
definition of associated vector bundles,

le, w] 4, = [Rne, Ad(hil)(w)]Ad : (4.1.14)
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We check whether the image under I, is independent of the representative of [e,w]:
Ig([é, Ad(h‘1><w>]Ad) = [Rne, I,(Ad(h™")(w))]
_ [Rhe, <p_T(h_1) ® p—T(h—l)) (L,(w))] (4.1.15)

AQ
= [e. I, ()]s -

Thus, I, is defined independently of the local orthonormal frame and, therefore,
constitutes a globally well-defined isomorphism of associated vector bundles. O

Hence, on every semi-Riemannian manifold there exists this intrinsic link of the

adjoint bundle of SO(M, g) and the bundle A2T* M.

By restriction of I, to Ad(Q) we obtain a subbundle of A2T* M of rank dim(g). This
is the point where the geometries of a G-structure and a gauge principal bundle on M
are connected. One simply requires that the field strength Fq € T'(A2T* M ® Ad(5B))
be a section of I,(Ad(Q))®Ad(*B). That is, the 2-form part of F4 is required to take
values in I,(Ad(Q)) only, instead of in the whole bundle A?T*M. This motivates
the following definitions.

Definition 4.1.3: Consider a metric G-structure Q being compatible with a semi-
Riemannian metric g on M, and let (B, 7, M, H) be a principal fiber bundle.
We call

W(Q) = I,(Ad(Q)) c A°T*M (4.1.16)

the instanton bundle of Q.
A connection A € C(B) is called an instanton for Q, or a Q-instanton, if

FyeT(W(Q)® Ad(B)) = I'(A*(M) ® Ad(B)). (4.1.17)

Let us finish this section with a side remark on the geometry of adjoint bundles. The
fibers of the adjoint bundle Ad(P) of an arbitrary principal bundle (P, m, M, H) are
endowed with a Lie-algebra structure given by

] : Ad(P) x Ad(P) — Ad(P), |[p.€], [p.C1] = [, [ Clo] pggpy: (4:1:18)

Ad(P)

Here, [£,(]y is the commutator of two elements of h. We have to check that this
prescription does indeed yield a well-defined map, i.e. that it is independent of the
representatives of the equivalence classes. To this end, denote by ¢(§) € I'(T'H) the
left-invariant vector field on H generated by &, and the Lie bracket on I'(T'H) by
[, Ir(r#)- We compute

ad(Ad(h™1)(©) (Ad()(Q) = | ((Ad(™)(©)). w(Ad(h™)(0)) |

I(TH) e
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= (Rin [900), eQlrrm)

= (Bnx 2([€:Cly)) . (4.1.19)
~ o (Ad(n)([&: CTn) )
— Ad(h™)([€, ).

le

We thus have
([, AdE))), (R, AN = [Bap A (16,C6) ] s

= [p. [6: Clo) gy + (4.1.20)

Ad(P)

whence the definition of the bracket on Ad(P) is independent of the representatives.
Due to the linearity of the Lie bracket on b, this yields a C(M)-linear Lie bracket
on I'(Ad(P)) and, hence, induces a Lie-algebra structure on the C'*(M)-module
'(Ad(P)).

This Lie algebroid structure has been noticed before (see e.g. [35]), but in the case
of P = SO(M,g) for some (semi-)Riemannian metric g on M, it is mediated to
A’T*M and Q?(M) via I,. Note that I, is C®(M)-linear when viewed as a map
I, : T(Ad(SO(M, g)) — Q*(M) of C*(M)-modules, implying that that the bracket
on A2T*M is C®(M)-linear as well. The induced Lie bracket simply reads

D
Lo ging L, gk A g _ 1 i
[5 CU’LJB A ﬂ y §/~Lkl,8 A ,B ]AQT*M = 5 (lglwl‘k Mkj)ﬂ A ﬁ . (4121)

['(W(Q)) then is a Lie subalgebra of Q2(M) that is induced by Lie subalgebras
isomorphic to h on the fibers of Q2(M). Moreover, this structure is a Lie algebroid
(for the definition see e. g. [36]) over M modeled on either Ad(P) or A2T*M if taken
together with the trivial anchor map.

4.2 Implementations of the Instanton Condition

As we have established above, the instanton condition is the requirement that the 2-
form part of the field strength of a connection lies in a certain subbundle of A2T* M.
In order to check this for a given connection on a particular geometry, one has to
identify this subbundle of A2T*M and investigate whether the 2-form part of the
field strength everywhere is a linear combination of a local basis of this bundle.

This is a problem of pure linear algebra, and further geometric features of the instan-
ton condition are by far not obvious in this formulation. For example, there seems
to be no apparent relation to the Yang-Mills equation (with torsion) for the gauge
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4 Geometry of Instantons

connection, which we would expect a proper instanton condition to imply. Thus,
we are interested in alternative ways to impose the instanton condition that make
features like this more manifest. In particular, we should clarify the relation indi-
cated in section 1.3 between the instanton condition of section 4.1 and the gaugino
equation

~(F1)(e) = 0, (4.2.1)

which is the requirement that last line of (1.3.1) vanishes. Again we mostly follow [2,
12] in this exposition.

First, for a G-structure with simple Lie algebra g and G a proper subgroup of SO(D),
one can construct a nowhere-vanishing 4-form on M by mapping the quadratic
Casimir of g to g ® g via the Killing metric, transferring this to Q%(M) ® Q?(M)
by means of I, and then antisymmetrizing the result. This yields a 4-form with
G-invariant components on M. One can then show

Proposition 4.2.1: Let (MP,g) be a Riemmanian manifold, G = SO(D) a proper
subgroup with simple Lie algebra g, (Q, 7, M, G) a G-structure on M compatible with

g and Q € Q*(M) the 4-form constructed via the above prescription.
Then we have for all e Q2(M) that

pel(W(Q) < #(=QAp)=-—pu, (4.2.2)

where * is the Hodge star induced by g.

This version of the instanton condition has first been introduced in [37]. If we take
a connection A € C(B) on (B, 7, M, H) solving (4.2.2), we see upon applying the
covariant differential d4 to this identity that

daxFa = —(d=Q) A Fy. (4.2.3)

That is, the instanton equation (4.2.2) implies the so-called Yang-Mills equation
with torsion (4.2.3). Clearly, (4.2.2) implies the Yang-Mills equation without tor-
sion whenever @ is co-closed, which is the case for integrable G-structures, i.e. on
manifolds with special holonomy [2].

On a generic SU(2) 5-manifold, the only nowhere-vanishing 1-forms which are
present generically are ¢n for nowhere-vanishing function ¢ € C®(M). The lin-
ear map

o= (A ) (4.2.4)

has eigenspaces and eigenvalues as required in [12], whence 7 must be the (D — 4)-
form arising from the above construction on such spaces. That is, there we have
#() = 7. Similarly, on generic 6-dimensional SU(3)-manifolds we have *Q = w.
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4.8 Deformation of G-Structures

This is because @ is constructed by purely algebraic means, insensible to any geo-
metric properties of the G-structure, and the only 4-forms present on any generic
SU (3)-structure 6-manifold are #(¢w). Again, w yields the desired eigenspaces and
eigenvalues.

However, we could in principle generalize this second version of the instanton con-
dition by using different nowhere-vanishing (D — 4)-forms that may occur in certain
situations. We will encounter such a case in section 5.4.

Another important case is given when the preimage of G under the double covering
A : Spin(D) — SO(D) stabilizes a spinor in the spinor representation ps of Spin(D),
such that there exists a nowhere-vanishing spinor € € I'(S(M, g)) on M. Then we
have

Proposition 4.2.2: Let (M?,g) be a Riemannian manifold, G = SO(D) as de-
scribed above, and let (Q,m, M,G) be a G-structure on M defined by a nowhere-
vanishing spinor e € T'(S(M, g)) on M.

Then for u e Q%(M) we have that

peT(W(Q) <= (e =0. (4.2.5)

This is due to the fact that v(8%) v(8?) = 2 ps(E¥) on spinors of Spin(D) [34]. As
has been worked out in [2], the condition (4.2.5) implies the Yang-Mills equation
without torsion if the spinor € is Killing with respect to the Levi-Civita connection
of the metric g.

The last version of the instanton condition brings full circle the detour into the
geometry of G-structures and instantons that we embarked on motivated by the
gaugino equation (4.2.1). Recall that this is one of the supersymmetry conditions
of heterotic supergravity (1.3.1).

These two versions of the instanton condition are much more explicit than its first
version (4.1.17). In this thesis we will mostly make use of (4.1.17) and (4.2.2), since
we will consider G-structures that either do not have a Killing spinor, or whose
Killing spinor is more difficult to handle than the generic one of e.g. a Sasaki-
Einstein SU(2)-structure in 5 dimensions.

4.3 Deformation of G-Structures

In this section we investigate the geometry of G-structures and deformations thereof
on a generic manifold M. The considerations in this chapter seem to be new to
the literature. They will have important implications on the instantons defined by
G-structures related by a special class of deformations.

Let M be a manifold of dimension D and F(T'M) its frame bundle. As additional
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4 Geometry of Instantons

data, assume that there is a G-structure Q ¢ F(T'M) on M with structure group
G < GL(D,R). This G-structure may be defined by defining sections

T E F(E), where FE = F(TM) X(GL(D,R),,D) Vv (431)

for representations p of GL(D,R) on a vector space V. In this case, G is defined as
the stabilizer of an element 75 € V' with respect to p, and for every x € M there is a
q € Q, such that

Tz = [q, 0], (4.3.2)

as we introduced in section 2.1. Recall from there the crucial result that for associ-
ated bundles we have

E = F(TM) X(GL(D,R),p) V= Q X(va\G) V. (433)

As in chapter 2, in our abstract considerations we use only one defining section as a
representative for all the defining sections of Q. In general, G-structures have several
defining sections simultaneously, as for instance SU (2)-structures in dimension 5 do
(cf. section 3.2).

Now we deform the G-structure Q. To this end, consider a map

h:M — GL(D,R), z — h(z). (4.3.4)

This induces a map from the principal bundle F(T'M) to itself, given by the pre-
scription e — Ry (r(c)) €. The question we are interested in now is, whether or not
the image of Q under this map again is a G-structure. Recall that we view G as a
fixed subgroup of GL(D,R). The answer is then given by the following proposition:

Proposition 4.3.1: Let Q ¢ F(TM) be a G-structure on M, and consider a map
h: M — GL(D,R), z — h(X). Denote the image of Q under the right-action of h
by Q' == Ry, Q. That is,

Q/ = {Rh(ﬂ'(q)) q ‘ q € Q} (435)

Then the following statements are equivalent:

(1) Q" is a G-structure on M.
(2) h takes values in Ngppr)(G) only, where

Norwm)(G) ={ae GL(D,R)|aga™ € G Vg e G} (4.3.6)

is the normalizer of G in GL(D,R).

(3) If Q has a defining section T € I'(E) in a vector bundle associated to F(T'M)
as above, the prescription

Trtg) = [Rim(a) 4 0] (4.3.7)
yields a globally well-defined section of E.
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4.8 Deformation of G-Structures

Proof. (1) = (2): Assume that Q' = R, Q ¢ F(TM) is a G structure on M. In
particular, Q' is a principal subbundle of F(TM) and it carries a right-action of G
given by the restriction of the right-action existing on F(T'M). In this case, Q' is
closed under this right-action of G, i.e.

Ry e VgeG, ¢deQ. (4.3.8)

Now for every ¢’ € Q' there is a unique g € Q such that ¢’ = Ry, ¢, where 2 = 7(¢’).
Hence,

Ryq' = Ry Rpy(p) 4 = Ri(2) g9 = Ri(w) Rah(z))(9) € (4.3.9)

must still lie in @'. Here we denoted the inner automorphism of H by
a(hy)(hg) = hy ho hT'. (4.3.10)
Since Q' is defined as the image of Q under Rj,, we have Ry ¢’ € Q' if and only if
Roh(a))(g) 1 € Q- (4.3.11)

This is equivalent to
a(h(z))(g)e G Yxe M, (4.3.12)

because Q is closed under the right-action of G, and because the right-action of G
on Q is simply transitive. But this is just the condition that h(z) € Ngr(pr)(G) for
all z e M.

(2) = (1): First, note that, as Ry, is a diffeomorphism on F(T'M), Q" endowed with
the induced differentiable structure is indeed a submanifold of F(T'M). If this was
to be a G-structure on M, the restriction of the right-action of GL(D,R) on F(T'M)
should be a right-action on Q' as well. As before, the right action is given by

Ryq' = Ry Ri(z) 4 = Ri(x) g4 = Bn(a) Ram@)(o) & (4.3.13)

which we know to be an element of Q' since we assume statement (2) of the propo-
sition. Furthermore, as the right-action of G on Q is simply-transitive and a/(h(z))
is an automorphism of G for every x € M, the above G-action on Q' is simply tran-
sitive. Hence, Q' is a principal G-subbundle of F(T'M), and thus, by definition, a
G-structure on M.

(2) « (3): In the case of (2) we have

Tt = [Bu@) ¢ 1] = [¢, p(h(z))(70)]- (4.3.14)

For 7/ (q) 1O be well-defined, this has to be independent of the particular choice of q.
Thus, we compute

[Rhz) Rg 0, T0] = [Ragh)-1)(g) Br@) ¢ 0] (4.3.15)
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4 Geometry of Instantons

= [Rix) ¢ pla(h(z)™1)(9))(70)].

This is equal to [Ry(,) ¢, 7o] if and only if

p(a(h(z)") (9))(10) = 70, (4.3.16)

which is just the requirement that a(h(x)~1)(g) € G. In turn, this is equivalent to
h(z) € Narpr)(G) for all z € M. As h is smooth and defined globally, so is 7/. [

Definition 4.3.2: We say that the tuple (Q, Q') of G-structures on M satisfies the
normal deformation property with respect to h if there exists a smooth map
h:M — Ngrpr)(G), © — h(z) such that

Q. = Ri(z) Qa- (4.3.17)

That is, for every ¢’ € Q' there exists a unique q € Q such that ¢ = Ry (x(¢)) ¢-

Let us consider the case where the G-structure is defined by a tensor field, as for
example a Riemannian metric. The principal bundle Q of the G-structure in such a
case is the set of all frames of T'M with respect to which the defining tensor field has
certain standard components. To all frames of T, M belonging to Q we now apply
the transformation

ep — h(z)”, ey (4.3.18)

We then ask, whether or not there exists a globally well-defined tensor field that takes
the very same standard components with respect to the transformed frames, that
the original tensor field took with respect to e. This is equivalent to the statement,
that the transformed frames constitute a G-structure. It is crucial that this must
hold true for all bases belonging to the original G-structure Q. As we have just
proven formally, this is the case if and only if h takes values in the normalizer of G
in GL(D,R) exclusively.

The easiest example where this holds true is

h=¢lp, (4.3.19)

where ¢ € C*(M) is a smooth, nowhere-vanishing function on M. R then just
rescales the bases adapted to Q, and, as h commutes with all of GL(D,R), this
yields a new G-structure Q" on M.

In proposition 4.3.1 we have found a large class of deformations of that produce
new G-structures from given ones. It will also be important that if, conversely, we
were given a G-structure Q on M and a map h : M — GL(D,R) such that R, Q
is a G-structure again, we can infer that h takes values in the normalizer of G in
GL(D,R) exclusively.
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4.8 Deformation of G-Structures

The map Ry, : Q@ — Q' is not an isomorphism of principal G-bundles since it does
not map the right-actions of G on the respective bundles to one another. Thus,
in general, connections on Q' are not the pullbacks of connections on Q along Rj,.
Nevertheless, propositions 2.2.1 and 2.2.2 provide a bijection between C(Q) and
C(Q’) in a slightly restricted situation.

Proposition 4.3.3: Assume that (Q, Q') are two G-structures on M that satisfy
the normal deformation property with respect to h. Furthermore, let the splitting
gl(D,R) = g®m be invariant under Adgr(G). We identify A€ C(Q) — C(F(TM))
with its extension to a connection on F(TM).

There exists a bijective map

fon:C(Q) = C(Q), fon(A)=prgo A (4.3.20)

Proof. Proposition 2.2.2 directly implies that fo 5(A) € C(Q’) is a connection on Q’.
In order to prove that this map is bijective, we recall that C(Q) is affine vector space
modeled over Q} (9, g)(@449). Due to the Ad-equivariance of elements of that vector
space, we can extend every w € Q}ZOT(Q, 9)(@A49) to a horizontal, Ad-equivariant 1-
form w € Q,lwr(F(TM),g[(D,R))(GL(D’R)’Ad). From the proof of proposition 2.2.2
we see that its restriction to Q' is horizontal and Ad-equivariant. Moreover, it is
g-valued on Q'. To see this, let e be a local section of Q. Then, ¢ = R, oe is a

local section of Q'. We have
e*w = Ad(h™) o e*w. (4.3.21)

This is g-valued because e*w is g-valued by construction and h takes values in the
the normalizer of G.
Therefore, the auxiliary map given by

Qo (2,8) 4D - 0, (2,9) 9, w s wio (4.3.22)

is an isomorphism of vector spaces.
Consider a connection A € C(Q). Every other connection on Q is of the form A + w
(Q,9)(@AD_ Upon application of fon we obtain

fonr(A+w) = fon(A)+ f(w) = fon(A) +wo- (4.3.23)

Since fon(A) € C(Q') and f is bijective, we can obtain every connection on Q' by

1
for an w € ;.

these means. Thus, fg is surjective.
If Ay, Ay € C(Q), we have A; — Ay € Q) (Q,9) @AY and

fon(A1) — fon(A2) = fon(Ar — Ag) = f(A1 — As). (4.3.24)

Due to the bijectivity of f, this is equal to zero if and only if A; = A, whence fg
is injective as well. O
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However,
for™ ' # froon-1, (4.3.25)

which can be seen by using local representations with respect to e and ¢/ = Rj, o e.
The reason for this is that the pry in the definition of fg ) truncates the inhomoge-
neous term in the transformation of A.

The local representation of fg j(A) reads

e*(fon(A)) = prgo (Ad(h™") o e* A+ h*ugL) (4.3.26)
= Ad(h™ ") oe*A + pryo h*ugy. (4.3.27)

This bijection of C(Q) and C(Q’) does, in particular, apply to normal deformations of
metric G-structures, where so(D) = g®n is invariant under Adso(G). In order that
the proposition applies, we have to make sure that the splitting gl(D,R) = g@ m is
invariant under Adgr(G). First, the splitting

gl(D,R) = s0(D) @ sym, @ tr, (4.3.28)

is invariant under the adjoint action of SO(D). Here sym,, is the space of symmetric,
traceless matrices, and tr is the space of multiples of the unit matrix. The invariance
of the splitting of s0(D) under G and the fact that for metric G-structures we have
G < SO(D) c GL(D,R), imply the invariance of gl(D,R) = g ® m under G.

As an example, consider G = SO(D) and h = ¢ 1. The normal deformation leads
from the Riemannian metric g to ¢? g. Proposition 4.3.3 not only implies that there
is a one-to-one correspondence between connections preserving g and ¢? g, but also
that their local representations are related via (4.3.26). Therefore, once we know a
connection A preserving g, we can use both A and fg ,(A) in computations.
Nevertheless, we will encounter special cases with simpler relations of connections
on Q and Q' in sections 6.4.2 and 6.6.

Let us now work our way towards the instanton conditions (in the sense of (4.1.17))
induced by the G-structures Q and Q' satisfying the normal deformation property.
We begin by considering their adjoint bundles.

Lemma 4.3.4: Assume we are given two G-structures Q and Q' on M that satisfy
the normal deformation property with respect to h : M — GL(D,R).
Then their adjoint bundles coincide, i. e.

Ad(Q) = Ad(Q') c Ad(F(TM)). (4.3.29)
Proof. We have

Ad(F(TM)) = F(TM) X(GL(DR),Ade) 81D, R)
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=Q *(G,Ada @) gl(D,R) (4.3.30)
=g X(G,Adgy ) gl(D,R).

Recall that on g the restriction of Adg; to G coincides with the adjoint representation
of G, for we view G as a fixed subgroup of GL(D,R). Therefore,

Ad(Q) = Q X(¢,4ds) 8 = Q X(G,Ad g,
( c) ( eite); (4.3.31)

Ad(Q) = Q' X(G.Adg) 8 = Q X(G.Adey ) B

and, hence, both are vector subbundles of Ad(F(TM)). In particular, Ad(Q) is the
subbundle of Ad(F(TM)) whose elements can be written as [g,&] for some ¢ € Q
and & € g. For elements of Ad(Q) we have

[9. €] = [Ru(w) ¢, Adci(h(z) ") (§)] = [¢', Adea(h(=)™")(E)]. (4.3.32)

As the adjoint action of h(x) preserves G in GL(D,R), on the Lie algebra level it
also preserves g in gl(D,R). Hence,

[g, €] = [d', Adei(h(z)1)(§)] € Ad(Q') = Ad(F(TM)). (4.3.33)

Thus, Ad(Q) c Ad(Q'), and the same same arguments hold for the converse direc-
tion as well. O

Therefore, the adjoint bundles of G-structures that are related by means of a nor-
mal deformation coincide. However, this does not directly translate to the induced
instanton bundles.
First, we have to make sure that G < SO(D), since we need a Riemannian metric
compatible with the G-structure in order to even define W(Q). Again, recall that
we consider G and SO(D) as fixed subgroups of GL(D,R), where we consider the
standard embedding of SO(D) into GL(D,R). Therefore, let us now restrict our-
selves to G-structures allowing for a compatible Riemannian metric.
The problem is that the transformations h : M — GL(D,R) that we consider need
not be orthogonal, whence there might be no Riemannian metric compatible with
Q and Q' simultaneously. Thus, let ¢ be a Riemannian metric compatible with Q
and ¢’ a Riemannian metric compatible with @'. The instanton bundles are given
by

W(Q) = 1,(Ad(Q)) and W(Q') =1I,(Ad(Q)). (4.3.34)

First, if ¢ = ¢, the previous lemma implies that W(Q) = W(Q’). For the general
case, consider an element € W(Q). With respect to a frame e adapted to Q, this
is of the form

1 1
p=5 a8 A B = Io(|a 5 an ). (4.3.35)
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where 1y, E% € g < s0(D) < gl(D,R). Recall that
eq = [e,vy] and [ = [e, 0], (4.3.36)

using the conventions of section 4.1.
We may express the element p of A2T*M with respect to a local frame given by
e = Ry () €, which is a local section of Q’. The coframe associated to this frame is

(8 = [Rroe, 0] = [e, p~"(h) (0] = [e, p(h™1)% 6°] = p(h™1)% B°.  (4.3.37)

That is, dropping the p of the standard representation of GL(D,R) on R” we can
compute the preimage of u under I,:

H= %:U’ab B A /Bb =HB= %h(x)ai Hab h(‘r)bj (5,)1 A (ﬁl)j

1 (4.3.38)
= Ig'([e/» 9 h(x)%; Hab h($)bj Ew])

We are still searching for conditions on h such that the instanton bundles of @ and
Q' = Ry, Q coincide. From the above result one can see that

peW(@) o [¢) 3 h@), mh(a)'y B e Ad(Q)
< h(@)" pah(2)’; EY eg. (4.3.39)
Thus, the question is whether the linear map given by
pab B = h(w)®; pap h(x)’; EY (4.3.40)

preserves g < so(D) for all z € M.
To sum up, we arrive at

Corollary 4.3.5: The instanton bundles of a pair (Q, Q') of G-structures on M sat-
isfying the normal deformation property with respect to h : M — GL(D,R) coincide
if and only if the map

D) 1 50(D) = 50(D),  pap B h(2); pap h(x)?; EY (4.3.41)

preserves g as a vector subspace of so(D) for all x € M.

In particular, this is true whenever h takes values in SO(D), that is, whenever the
two G-structures are compatible with the same Riemannian metric.

This also holds true for ®, being proportional to the identity transformation on a
subspace of so(D) containing g.
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Proof. The classification
W(Q) =W(Q) < ®pu@ cg YeeM (4.3.42)

is evident from the arguments that led to the corollary.

If h is SO(D)-valued, the action of h in (4.3.41) translates to the adjoint action of
SO(D) on so(D) by lemma 4.1.1. As we additionally have h(x) € Ngo(p)(G) for all
x € M, this preserves the subspace g of so(D). O

Although this treatment may seem somewhat technical at this point, both of the
cases mentioned in the corollary will occur in the constructions in chapter 5 and
chapter 6. There we will find these general assertions very useful, since they will
provide us with immediate knowledge about the geometries we encounter there as
well as about how their instanton bundles are related.

As an example, let us consider a 5-manifold M? carrying an SU(2)-structure de-
fined by (1, w®) (cf. section 3.2). The representation of SU(2) on R® that is used to
associate the tangent bundle to @ < SO(M, g) splits into a one-dimensional and a
four-dimensional representation. This can be seen from the fact that 7 is a defining
section whose dual singles out a 1-dimensional subbundle of TM?3. Since the repre-
sentations are irreducible, every element of SU(2) < SO(5) commutes with matrices
that are proportional to the identity on these two invariant subspaces due to Schur’s
lemma.

Hence, we may consider a deformation of the SU(2)-structure induced by the matrix

C(¢) = [¢_1 = 1], (4.3.43)

where ¢ € C*(M, R, ). Under this deformation, the local coframes 5 of the SU(2)-
structure transform as

B $p* and B°— O (4.3.44)
We, therefore, infer the following statement:
Proposition 4.3.6: Let Q < SO(M, g) be the SU(2)-structure defined by (n,w®).
If the defining sections take their standard form with respect to the local section e
of Q, then the forms (n, > w®) take their standard forms with respect to the local

frame €' = Re(y) e.
The forms (n, ¢* w®) therefore define an SU(2)-structure @' = SO(M, g4), where

Go=n®ON+ 20w @B, ab=1,... 4. (4.3.45)

From the fact the induced deformation of the SU(2)-structure again is an SU(2)-
structure we know by proposition 4.3.1 that C' takes values in the normalizer of
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su(2) in gl(5,R). However, it is not so(5)-valued, as it changes the metric on M?°.
Nevertheless, SU(2) is embedded into the upper-left (4x4)-part of SO(5), such that

su(2) {% i B ’u& — iy = 0} < s0(5). (4.3.46)
As the upper-left (4x4)-part of C' is proportional to 14, the intermediate subspace
above is invariant under ®g(4(;)) for all x € M. Hence, the original and the new
G-structure define the same instanton bundles. This particular example has already
been used in [2], and we will reproduce the respective results from that paper in
section 6.2.

As another example, considering transformations of the form ¢(x) 1p on MP re-
produces the known fact that the instanton condition is invariant under conformal
transformations.
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Chapter 5

SU(3)- from SU(2)-Structures

5.1 General Statements

After the general considerations of the previous chapters, we now come to more
explicit constructions. Here, the general task is to reduce abstract equations on ge-
ometric quantities to differential or algebraic equations on functions, which we can
solve explicitly.

To this end, we need geometries that are more accessible than just generic geomet-
ric spaces. We either need additional geometric data, like group actions or certain
global sections of bundles over M, that we can use in explicit constructions and
calculations, or, even more, we could use coordinate charts. These would, however,
restrict the admissible manifolds to very specific ones.

Conical extensions of generic manifolds provide a class of geometric spaces which
benefit from both these features to certain amounts. They have been used suc-
cessfully in constructions of solutions to instanton and heterotic supergravity equa-
tions for example in [2-4]. In differential geometry, cone constructions are a well-
established tool for constructions of several special geometries, see for example [17,
24,38, 39].

We are still interested in constructing 6-dimensional manifolds with SU (3)-structure.
Consider a 5-dimensional Riemannian manifold (M5, g) which is endowed with a
one-parameter family of SU(2)-structures

Q,c F(TM), rel, (5.1.1)

where I is an interval. Denote by ¢, : M® < M°xI, x > (x,r) the embedding of
M?P into M°xT as the slice at parameter value r € I. As the 9, are subbundles of
F(TM?), we can construct embeddings

Qr — O, (erp) = (treleny), es) € F(T(MPI)) (5.1.2)

of @, into F(TM®x1I), where e, is a local section of Q,. and eg = 0. We now require
the family {Q,},c; to be smooth in the sense that the union of the images of these
SU (2)-structures on the slices of M°x1,

Q:=| |9 c F(T(M°xI)), (5.1.3)

rel

is an SU(2)-structure on M°xI. SU(2) is embedded into SO(5) as upper-left block
matrices, which in turn is embedded into SO(6) as upper-left block matrices, such
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5 SU(83)- from SU(2)-Structures

that SU(2) acts trivially on e5 and eg.
Let e, be a smooth family of local frames on M?®, where e, is adapted to Q,. This
induces a local section of Q on M3 x I which we denote by e. Thus, on M°x I we are

given globally well-defined sections having components with respect to e as follows:
1

W = S B A BY € QM XI),

n= —p@ e (M°xI), (5.1.4)
dr = 8% € QY (MPx1).

The foundation of the constructions in this chapter is the following proposition that
provides a procedure to construct SU(3)-structures alternative to the one in [24].

Proposition 5.1.1: Let M? be a 5-manifold and {Q,},c1 be a one-parameter family
of SU(2)-structures on M, which is smooth in the above sense.

(1) If (r, w®)rer are the defining sections of Q and ¢ : I — Ry, r— ¢(r) is a
smooth, positive function, then
(7 @) = (e(r)nr, G(r)* @), o, (5.1.5)
define a smooth family {Q.},er of SU(2)-structures on M?°.
(2) The pushforward Q' is an SU (2)-structure on M°x1I that is compatible with

the metric
g =o(r)* g +dr? (5.1.6)
if g» is the metric that Q, is compatible with on M?®.
(3) Q' is contained in an SU (3)-structure P, which is given in terms of the defining

sections
w=0"+dr AT = ¢*wl + ¢dr Ay, (5.1.7)
Qt =&* Adj— @t Adr = ¢*(Pw? Any —wp Adr), (5.1.8)
O = — (@1 AT+ &% A dr) - —¢2(q§w,} A Ty +w3 A dr). (5.1.9)

Proof. (1) is just a conformal rescaling treated already in section 4.3.

/Q\’ is an SU(2)-structure on M?®x I by the same reasoning as we gave for Q. Since §
takes its standard components with respect to the rescaled coframes, /Q\’ is compatible
with g. Hence, (2) holds true as well.

We prove (3) by showing that (w,Q2%,Q7) have the standard components of the
defining sections of an SU(3)-structure on a 6-manifold as in equations (3.1.14) and
(3.1.22). If 3 is a coframe adapted to /Q\’, and with 3% = 85 = dr, we have

w=d+draf=B"AB2+B3AB*+ 5% A S5, (5.1.10)
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Qf =@* Af—at Adr
= (=B AP HBAB) A(B) = (BT AP B2 A ) A B (5.1.11)
_ G135 _ 245 _ j16 _ 3236

Q = — (@ Aﬁ—l—cbzAdr)

= (B ABHBPAPYA ()= (=B AB+BABY B (51.12)
_ B145 + /6)235 + 3136 o 5246.

This is precisely the form that the defining sections of an SU(3)-structure on a 6-
manifold take in a coframe compatible with the SU(3)-structure. Hence, this proves
(3). O

Note that the transformation (1,w?®) — (¢n,¢>w®) can be seen as induced by a
transformation as introduced in definition 4.3.2. The above proposition yields a
way to obtain 6-dimensional manifolds with an SU(3)-structure from 5-manifolds
carrying families of SU(2)-structures.

It would, thus, be desirable to find a way of constructing families of SU(2)-structures
on 5-manifolds. The first example that comes to mind is the case of a constant family,
i.e. a single SU(2)-structure. This can always be lifted to an SU(2)-structure on
M?®xI and then extended to an ambient SU (3)-structure by the above proposition.
Furthermore, we can construct smooth families of SU(2)-structures on 5-manifolds
by considering a fixed SU(2)-structure and applying a smooth family of normal
deformations as introduced in section 4.3. This yields a smooth one-parameter family
of SU(2)-structures on M?® that can then be lifted to M°x I via proposition 5.1.1.
Such families of deformations are induced by families of maps (h;),er of the form

hy : M° = Ngrisgr)(SU(2), ©— he(z) Vrel. (5.1.13)

In order for the resulting family Q, = Ry, Q of SU(2)-structures on M?> to be
smooth, we need that

h: M°xI — Ngrsr)(SU(2)), (z,7) = he() (5.1.14)
is smooth. We can, thus, view h either as a family of maps (h,)qc; defined on M3,

or as a smooth map h from M®xI to Ngpir)(SU(2)) — Ngrer)(SU(2)). The
embedding is induced by

GL(5,R) — GL(6,R), L [L 1]. (5.1.15)

We directly conclude:
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5 SU(83)- from SU(2)-Structures

Lemma 5.1.2: Consider an SU(2)-structure Q on M?® together with a smooth map
h: MPxI — Ngper)(SU(2)). Then there are two ways of constructing an SU(2)-
structure on M°x I from this data.

First, one can apply the normal deformations given by h, to Q, obtaining a one-
parameter family Q, of SU(2)-structures on M?®, which can then be lifted to an
SU (2)-structure on M®x I via proposition 5.1.1.

Second, one can lift the constant family of SU(2)-structures given by Q, = Q to
M?®x I, and afterwards apply the deformation given by h : M°x1 — Nare,r) (SU(2))
to the resulting SU (2)-structure, thus again obtaining an SU (2)-structure on M°xI.
The SU(2)-structures on M®x1 constructed by these means coincide. That is, ap-
plying a family of rotations and lifting via proposition 5.1.1 commute.

As h = h(r), the SU(2)-structures resulting from the above construction are com-
patible with a ¢-cone metric on M°xI. The ¢-cones obtained this way carry an
SU(2)-structure Q that is contained in an SU(3)-structure P by the last part of
proposition 5.1.1. We, therefore, have the following embeddings of principal fiber
bundles as subbundles:

QP — SO(M°xI, gy). (5.1.16)

From this we infer that the instanton bundle of Q is a vector subbundle of the
instanton bundle of P,

W(Q) c W(P). (5.1.17)
In the following we will most of the time drop the hat of the lifted SU(2)-structure.
We now turn to employing this general procedure in explicit constructions that can

also be found in [39] and [40].

5.2 Kahler-Torsion Sine-Cones

To begin with, let us consider a 5-manifold with a Sasaki-Einstein SU(2)-structure
and I = (0,An), where A € Ry is a positive constant. As argued in section 4.3, a
conformal rescaling of the frames belonging to the SU(2)-structure yields another
SU(2)-structure. Thus, let us consider a family of conformal rescalings as induced
by

h: MPxI — Nepow) (SU(2)), hiz,r) = he(z) = AS;(A) {]15 0}7 (5.2.1)

i.e. B* — Asin(%)B*, B° — S5 The resulting SU(2)-structure is an SU(2)-
structure on the sine-cone

(M5><(0,A7r), g=A%sin (%)2% + dr2> (5.2.2)
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5.2 Kdahler-Torsion Sine-Cones

over M. We denote the unaltered pullbacks of 7 and the w® to the direct product
MP® x I along the projection 7 : M5xI — M?, (x,7) — z still by 7 and w®. These
are the defining sections of the SU(2)-structure on M® x I which results from lifting
the constant family consisting of just the Sasaki-Einstein SU(2)-structure on M?°.
We will often call this lift the pushforward SU(2)-structure on M?xI.

With this notation, the defining sections for the ambient SU(3)-structure for the
deformed SU(2)-structure are given by

w = A? sin (%)ng + A sin <%) dr A n,
Q" = A3 sin (%)3w2 A1 — A% sin (%>2w1 A dr, (5.2.3)
QO = —A3sin (%)3@)1 An—A? sin (%)2w2 A dr,

according to (5.1.7). In order to classify this particular SU(3)-manifold, we compute
its torsion classes.

Proposition 5.2.1: The torsion classes of (M®x (0, A7), g) endowed with the above
SU (3)-structure read

2 T 3 T
Wi=Ws=Ws=0, Wi=—7 tan (ﬁ> dr, Ws = tan (ﬂ> dr.  (5.2.4)

Proof. We compute

dw = 2A sin (1) (cos (1) — 1) dr A w® = _2 tan <L> dr A &P, (5.2.5)

A A A 2A
b an2 e (T2 2 :_é TN -2 ~
dQ™ = 3A sm<A> w* Adr An Atan<2A>w Adr A, (5.2.6)
s (D) _ 3 () o -
dQ™ = —3A SID(A) w Adr An= Atan(2A>w Adr A 1. (5.2.7)
Since Q A w = 0 and W3 € Q1 (M) @ Q12(M),
dwon QF = - WiwArwaw=0, (5.2.8)
whence we obtain
Wi =o. (5.2.9)
Further,
1
W4=§w4dw and W5 =% _dQ" . (5.2.10)

Note that the interior product _, is taken with respect to the sine-cone metric in all

these cases. Here this gives
1

W4:§<@3+dTA77)~<_%tan<i>dr/\&3>
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5 SU(83)- from SU(2)-Structures

2 T
- — < tan (ﬂ) dr (5.2.11)
and
1/~ ~ 3 T
= (w2 AF— Wl I R W4 i
Wi 2(w AT (.u/\dr) ( Atan(QA)w /\drAn)
3 r
~ = tan (ﬁ) dr. (5.2.12)
Now one can check that dw = Wy A w, implying W3 = 0. O

The fact that 3Wy + 2 W5 = 0, with both Wy and W5 being exact and real, indi-
cates that this SU(3)-structure is mapped to a Calabi-Yau SU(3)-structure via a
conformal equivalence [22]. In fact, the conformal equivalence of the sine-cone to
the cylinder over M? has been worked out explicitly for example in [39,40]. On the
other hand, the cone over M?® has been shown to be Calabi-Yau, as well as confor-
mally equivalent to the cylinder over M? e.g. in [2]. Composing these two conformal
equivalences yields a conformal equivalence of the sine-cone under consideration here
to the Calabi-Yau cone over M. This also maps the respective SU(3)-structures
onto one another in consistency with the results obtained above.

Recall from section 3.1 that we defined an SU(3)-structure to be Kéhler-torsion if
its ambient U(3)-structure defined by (g,w) is Kéhler-torsion.

Corollary 5.2.2: The SU(3)-structure (g,w,$) on the sine-cone over a Sasaki-
FEinstein 5-manifold as considered here is Kdahler-torsion.

Proof. From the torsion classes (5.2.4) one directly sees that (M, g,w) is a complex
manifold. Regarding the Kéhler-torsion property we make use of theorem 10.1
in [28], which states that the torsion 3-form of the canonical, or Bismut, connection
of an almost Hermitian manifold is given by

by (TB) = —J(dw) + by(N). (5.2.13)

Since Cgn (M) is complex, N vanishes identically and we have

by (TP) = —J(dw):—%ﬁ/\c&3
5.2.14
i r 3. p3 1 ool p2 . 92 ( )
:ﬂtan<ﬁ)(0 +0°) A (0" A0+ 67 A07),

where we made use of the 67 introduced in (3.1.16). This is the real part of a (2, 1)-
form, whence the SU(3)-structure under consideration is indeed Kéahler-torsion. [

However, 2 W4 + W5 # 0, such that this SU(3)-structure is not Calabi-Yau-torsion.
In particular, the Bismut connection preserves g and w, but fails to preserve Q.
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Note, furthermore, that in the limit A — oo this Kéhler-torsion SU(3) sine-cone
becomes precisely the Calabi-Yau metric cone over M mentioned above. In this
limit, r tends to the standard coordinate on this metric cone, and, as Wy, W5 — 0,
the Bismut connection converges to the Levi-Civita connection on the cone.

5.3 Nearly Kahler Sine-Cones

In this section we continue where we left off in the last section, namely at the Kéahler-
torsion SU(3)-structure on the sine-cone over a Sasaki-Einstein SU(2) 5-manifold
M?®. We construct a new SU (3)-structure on the sine-cone from this first one by
applying a rotation in the sense of section 4.3.

With fi,7 = 1,...,6, we extend the 't Hooft symbol n? to a (6x6)-matrix by putting
772}19 = 0 whenever i1 = 5,6 or = 5,6. Consider the map

T MPx(0, A7) — SO(6), T(x,r) = exp (i n?), (5.3.1)
or explicitly,
[ cos %) 0 —sin(gx) 0 |
0 cos(gx) 0 sin(5y)
T (z,r) = | sin(gx) 0 cos(gx) 0 . (5.3.2)
0 —sin(55) 0 cos(gx)

This can be understood as a family (7.),e(0,a ) of maps from M to SO(5), which is
embedded into SO(6) as upper-left block matrices, as elaborated on in section 5.1.
The rotation induced by 7T is applied to the SU(2)-structure Q on the sine-cone,
such that the induced transformation of the coframes of Q given by

Bl TP, B, (5.3.3)

This corresponds to acting on F(T(M°x1I)) with R7—1. We may first consider the
family (7;),e(0,ax) of rotations on M in 5 dimensions.

Lemma 5.3.1: Let M® be a 5-manifold endowed with a Sasaki-Einstein SU(2)-
structure Qs defined by (n,w®) and be (T;)re(o,ax) as defined above.
Then Rp-1 Qs =: Q5 . is a different SU(2)-structure on M defined by

N =",

wi = czs (%) w! — sin (%) w3, 5.3.4
W, = w”,

wi’ = COoS (X) w? + sin (K) w!
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5 SU(83)- from SU(2)-Structures

Proof. We only have to show that (n,,w?) take the standard components (3.2.4)
with respect to the rotated bases

Bl = (T, 8. (5.3.5)

Making use of the shorthand notation %1% = % A ... A % we compute
of = o () ot (5)
= (oo (5) - (55) ) 0"+ ) (535)
- 2008 (5 ) i () (7 + 9

=B+ 57
Furthermore,
w? = w?
() eI s
= -8+ B
and
wf = COs (%) w3 + sin (%) w?
= (cos (i)Q — sin (21) )(ﬂu + %) (5.3.8)
+ 2 cos (27;\> sin < ) (B + %)
= B2+ Bt

The computation for 7 is trivial, since 3° is invariant under all 7,, r € (0,Anx). O
We write (77, %) for the lifts of the (n,, w?) to the sine-cone, and by proposition 5.1.1,
we obtain another set of defining sections for an SU(3)-structure on the sine-cone.

It is given by (g,w, ), where g is the sine-cone metric and w and € are as in (5.1.7).

Proposition 5.3.2: The SU(3)-structure on the sine-cone over a Sasaki-Einstein
5-manifold as constructed here is nearly Kdhler.

Proof. First, we compute

dn = d(Asin (%) 17) = CoS (%)dr AN+ 2A sin (%)w?’, (5.3.9)
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4" d(Az sin (1) (cos (£) ! — sin (1) wz>>

= — %dr A @2+ 2A sin (%)dr A w! — 3A sin (%) coS (K)ﬁ Aw? (5.3.10)

de? = d(A2 sin (%)2w2> = % cos (%)dr A &% 4 3Asin (%)ﬁ Awh, (5.3.11)

di® = d<A2 sin (£>2<cos (%) WP + sin (%) w1)>

=§d7"/\d)1+2Asin(£

- A)dr/\w?’—%ﬁ/\djz. (5.3.12)

Hence, we have

3 3 3
_ (3 S\ 2 ~1 9 - 2 9 4
dw—d(w +d7"/\77> Adr/\w AN AQ . (5.3.13)
On the other hand,
a0~ = — ( AT +EE A dr)
2 4

=¥ &A@+ X(:JS Adr Af (5.3.14)
_2
= JWAw

whence this SU(3)-structure is nearly Kéhler, by definition 3.1.5. Its only non-
vanishing torsion class is W, = A = % O

By writing w and € in terms of 1 and the w®, one can see that we have constructed
the same nearly Kéhler sine-cone over Sasaki-Einstein 5-manifolds which has been
obtained in [24] by the use of flow equations. We, in contrast, gave a more explicit
way of arriving at this nearly Ké&hler sine-cone by means of deformations as discussed
in section 4.3 and proposition 5.1.1.

In the limit A — oo, the rotation 7 becomes trivial and the metric approaches the
cone metric. In this large-volume limit, the nearly Kahler SU (3)-structure sine-cone
tends to the Calabi-Yau cone since W; — 0.

5.4 Half-Flat Cylinders

The third construction we would like to consider is an SU(3)-structure on the direct
product M?x1I. The interval can very well be the complete real line. In this case
the resulting Riemannian manifold M xI endowed with the direct-product metric
is usually called the cylinder over M°. We will, however, even for a bounded interval
I call M®x I with the direct-product metric a cylinder over M?.
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5 SU(83)- from SU(2)-Structures

We lift the Sasaki-Einstein SU(2)-structure of M® to the direct product and employ
the deformation

BY = cos(¢) B* +sin(¢) B°, BZ = -8,
B = B2, 4 = cos(¢) B* —sin(¢) B, (5.4.1)
B2 = 0P S =dr = g5,

where ¢ € [0,27] and p € R are two constant parameters. The resulting Riemannian
manifold is the cylinder over the Riemannian manifold

(M, g5.0 = 0 B* @ B* + 0* B° ® B°). (5.4.2)

Lemma 5.4.1: Let M® be a 5-manifold carrying a Sasaki-Einstein SU(2)-structure
Qs defined by (n,w), and let 5, be as defined above.

Then these new coframes define a new SU(2)-structure Qs (¢ 5 on M> for all pa-
rameter values (¢, 0) € [0,27] x Ry, which is defined by

Nz = 07,

w =~ (5.4.3)
w? = cos(¢) w? + sin(¢) wt,

w3 = cos(¢) w! — sin(¢) w?

Proof. A direct computation shows

wh= = (cos(¢)? +sin(¢)?) B2 — 53 = gLt + 6%,
w? = cos(¢) (= B + p*) +sin(¢) (8" + 57%) = —B2° + B2, (5.4.4)
wg _ COS(C) (514 + 52?’) + SIH(C) (ﬁlf} o ﬁ24) _ ;2 + B24

This already completes the proof, since with respect to the coframes 3, the defin-
ing forms (n,,w?) have the standard components of defining sections of an SU(2)-
structure. O

Note that we do not consider the parameters ¢ and o to be related to the cone
direction, in contrast to the nearly Kéhler construction. In the present case, ( and
o are constant, free parameters. Employing the rotation on M?® for fixed values of
the parameters, lifting the resulting SU(2)-structure to M?°xI and extending it to
an SU(3)-structure defined by (w, ) from (n,,w?) as in (5.1.7), we arrive at

Proposition 5.4.2: The SU(3)-structure on the cylinder over (M3, g5 ,) defined
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by (w, Q) has the following torsion classes:

_3+2g2

W]._ 3@ 5 W1+=O,
40% -3
Wy = 03 (wz’—er/\nz), VV2+=07
0
20° — 3
W3 = 2 (wg/\dr—i-wiAnz), Wys=0, Ws=0.

20

Proof. First, we compute the differentials

3
dw = d(wg’ +dr A nz) = S w2 A, + 20wl Adr,
0

dQ+:d(w§/\nz—w;/\dr) =0,
3

dQ” = —d(wl An + w2 Adr) = Swd Adr An. + 2008 AW
0

Then we compare

dQ_Aw—(Z—i—Q)wg/\wg’/\drAnz

to

WAWAwW=3w Awd Adran,.

Thereby, we obtain
3+ 20°

W, = 30 and W, =0.

We proceed with
1
Wy = §w4dw=0 and W5 =0Q" _dQ" =0.

This leaves us with 3
dw = —3 W QF + W,

that is,
3 3+ 20°
W3=—fwg/\nz—i—QQw;/\dr+%(w§/\d7“—wiA77z)
0 1Y
20 —3
= Q2Q (w;/\dr—l—ngnz)-

Finally, there is
dQ=iWj wArw+ (Ws +iWy) Aw,
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whence
+ . Ti— 40" -3 3 3 3
(Wi +iWy ) rw=1i 30 (W) Awl —w, AdrAns). (5.4.16)
Thus, we arrive at
3 — 40?
Wi =0 and W, = 3 ¢ (wg’ —2dr Ams). (5.4.17)
0
Note that w . Wy = 0 and w _ W3 = 0 are indeed satisfied. O

By definition 3.1.5, this directly leads to

Corollary 5.4.3: The SU(3)-structure on the cylinder over (M®, g5 ,) defined by
(w, Q) is half-flat for all (¢, ) € [0,27] x R,.

We have constructed a two-parameter family of SU(2)-structures starting from a
Sasaki-Einstein SU (2)-structure in five dimensions and lifted this family to a two-
parameter family of SU(3)-structures on M®x1I, where I is an open interval. All
SU (3)-structures obtained this way are half-flat. Note that

This will be of interest in section 6.6.

5.5 Relevance for String Compactifications

In this chapter we constructed 6-dimensional manifolds with an SU(3)-structure
from 5-manifolds endowed with a Sasaki-Einstein SU(2)-structure. The Kéhler-
torsion and nearly Kéhler sine-cones obtained this way are 6-manifolds which can
be extended to compact 6-manifolds, possibly with conical singularities, by taking
their topological closure. However, note that due to the sine-factors, the sections
defining the SU(3)-structures tend to zero at the tips of the sine-cone. Thus, even in
cases where the metric does not become singular at the tips, as for example for M?>
being the round 5-sphere, the SU (3)-structures we constructed here will not extend
to the completion of the sine-cone. However, note that as (M?, g5) is Einstein for
the sine-cone constructions, the sine-cone will be Einstein as well. Due to this fact,
the sine-cones are of constant scalar curvature, whence there will be no singularities
in at least the scalar curvature at the tips.

Both SU(3)-structures on the sine-cones can be seen as defined by a Killing spinor.
In [12] it has been shown that sine-cones over Killing-spinor manifolds are again en-
dowed with a Killing spinor. This is similar to Bar’s famous theorem that the metric
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cones over Killing spinor manifolds carry a parallel spinor [38]. For nearly Kéhler
spaces the Killing-spinor property is proven for example in [28,41]. The sine-cones
constructed in this chapter are, therefore, suitable to appear in flux compactifica-
tions of heterotic string theory.

Half-flat SU (3)-structures turn out to be too broad a class to be defined by Killing
spinors. Instead, they are defined by generalized Killing spinors [30]. These are
nowhere-vanishing sections of the spinor bundle of M®, but in general the satisfy
VY% € = 7(A(X))(e) with a non-trivial tensor field A € End(T'M). As these struc-
tures are still defined by a spinor, one can still formulate the spinorial version of the
instanton condition (4.2.5). However, this seems to no longer imply the (torsion free)
Yang-Mills equations, such that the instanton condition might be an additional con-
straint rather than already implying the field equation for the gauge field in heterotic
supergravity. Half-flat structures are prominent in heterotic flux compactifications,
see e.g. [42].

Note that as long as we consider a bounded interval in section 5.4, the resulting half-
flat manifolds extend to compact spaces, since all the structure can be extended to
the boundary values of the cone parameter smoothly. These may, therefore, well be
considered as internal spaces in flux compactifications of the heterotic string.
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Chapter 6

Construction of Instantons

6.1 Instantons on Conical 6-Manifolds: General Idea

With the background on the geometry of instantons accumulated in chapter 4 at
hand, we use knowledge about G-structures and defining sections elaborated in chap-
ter 2 to formulate a general ansatz for the reduction of the instanton equation on
conical manifolds, and use this to obtain explicit instanton solutions on the spaces
constructed in chapter 5. The principal idea of the constructions in this sections
has already appeared in [1]. Here, we formalize these considerations, such that
some results and constraints become clearer. In particular, the origin of the con-
straint (6.1.12) becomes very clear in these geometrical terms.

In the following we assume (M, g) to be a D-dimensional Riemannian manifold en-
dowed with a G-structure Q, and we consider a gauge principal bundle (B, 7w, M, H)
over M as additional data. Suppose that, as principal bundles, Q is a bundle reduc-
tion of . That is, we have the following structure of bundle reductions.

9 xG

9,50 X L@ Ax )\

SO(M, g) x SO(D) B x H 6.11)

In particular, there is an open covering {(Us, €5)}sex of M by local sections of Q.
In the above situation, this is an open covering of M by local sections of SO(M, g)
as well, since Q is a subbundle of SO(M, g).

Let p: G — GL(RP) the representation that associates TM to Q, i.e.

TM = SO(M, g) X(s0(p).p) R” = @ X (G0, R (6.1.2)

Recall that if v,, p = 1,...,D is a basis of RP and 0#, u = 1,...,D is a basis of
RP* we have

(eo)y = [€q,vu) ET(TyM) and (Bo)* = [eq, 0] € T(T7 M) (6.1.3)
in the language of associated vector bundles. We may thus write

eq () = (ea'l|x7-~-7€aD|x) (6.1.4)
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6.1 Instantons on Conical 6-Manifolds: General Idea

as a local orthonormal frame of Ty, M for all x € U,. Additionally, recall that if
the representation on R” reads p(g)(v,) = p(g)",, v, the representation on (RP)* is

p~ T, and

p ()0 = (p"(9) [ 0" = (p" (g7 ") ) 0" = plg "), 0" (6.1.5)

Furthermore, since Q is a bundle reduction of 9B, the open covering {(Us, €5)}oex
induces an open covering {(U,, (A o €)s)}sex; of M by local sections of 9B. For
compactness of notation we write é, := A o e,.

Now, let A € C(Q) be an instanton for Q. This induces a connection A € C(B),
which arises from the pushforward of the horizontal tangent spaces on Q via A*A.
In particular, A and A are related as (cf. [18] or appendix A.2),

A

e A= (Noe,)*A=Xo(e,*A) VoeX. (6.1.6)

Our goal is to find other instantons that are connections on B. As C(*B) is an affine
vector space over Q) (9B, h)H:AdH) e can write any A’ € C(B) as

A'= A+ X, where X € Q). (B, §)HAdn), (6.1.7)

In order to check whether such a connection is an instanton, we have to compute its
field strength. To this end, let {Ig| B = 1,...,dim(G)} be a basis of g. Additionally,
the local representations of X with respect to e, are given by

(e"X), = (&"X) ((eo)n). (6.1.8)

Lemma 6.1.1: With respect to the orthonormal coframe (8,)* and with the nota-
tion introduced above, the local representation of the field strength of A’ = A + X
reads

éU*FA+X — A er*FA + d(éa*X)u A (By)H
b (T8 (6" X), + (7 X),. (27X) 1) @ (B0 1 (B)° (6.19)
+(DalIn), (67X),] = (pulIR))", (60" X)) @ (0 A)F A (B,)".
T*,, is the torsion of A as a connection on F(TM) with respect to the frame e,.
Proof. We start from the generic form of the field strength and compute
oy FAYX — g (d(fx +X)+ % ad(A + X) A (A + X))

— 6, FA 4 6,%dX + ¢,* (ad(A) X (X)) +
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=Xoe, FA 4+ d(6,* X)), ® (Bo)" + (655 X), @ d(Bo)" (6.1.10)
+ad(é,*A) R (6,4 X) + %ad((éa*x)y) ((66*X)k) ® (B5)" A (Bs)"

Here we have used that pullbacks and exterior differentials commute. Now we make
use of 6,*A = A\, 0 es*A = (5,*A)P ® M\ (Ip) and write ad(€1)(&2) = [£1,&].
Employing the Maurer-Cartan identity we obtain

d(Bo)" = — pulea™A) A (Bo) + T

(6.1.11)
~ (eI, (eo® )% A (B)" + 5 T (o) (B

where T € Q%(M,TM) is the torsion tensor of A as a connection on F(TM). This
directly yields (6.1.9). O

Thereby, we are provided with an expression for the field strength of A’ in terms of
the field strength and the torsion of A, and the local components (é,*X), of the
Ad-equivariant, horizontal 1-form X on 8.

While we are comfortable working with the quantities derived from A, we do not
have much control over the components of X. In particular, in order to formulate
an ansatz for a possible instanton, we would have to assign a value to these com-
ponents for every z € M. Even more, we would have to specify a certain covering
{(Us, es)}sex of M, for the components of any section of associated bundles depend
on the chosen trivialization, i.e. the chosen local frames. In other words, the local
representations of X as used in the above lemma strongly depend on the choice of
the local sections. However, on a generic manifold with a generic G-structure, there
is no way of explicitly choosing such a covering of M by local frames.

Thus, the only way we have access to the components (é,*X), of X is to choose X
in a way such that its components are independent of the choice of local sections of
Q. This turns out to be possible, but imposes certain severe constraints on X.

Lemma 6.1.2: Consider a G-structure Q on M and a gauge bundle (B, 7, M, H)
over M which are related by bundle reduction as above. Let p denote the represen-
tation that associates TM to Q.

Then, if G is connected, X has the same components with respect to any two local
sections e, ¢’ : U — Q if and only if with respect to either of the sections

(), (67 X) ] = (pe(I5))", (65X ), = 0. (6.112)

Proof. The local representation of X with respect to e is given by é*X = (Aoe)*X.
We decompose this with respect to the local frame e = (e,,). That is, as before,

(6*X), = "X (e,). (6.1.13)
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Now let us consider a different section e’ that is related to e by means of the transition
map g:U — G, i.e.

¢ =Ryoe. (6.1.14)
Then we have
&*X = (Aoe)*X = (RyyoAoe)*X = Ady(A(g™")) 06X (6.1.15)
and
¢ =] =[(Rgoe),vu] = [e, plg)(vu)] = p(9)" ev- (6.1.16)

Hence, we may compute

(€ X)) =¢e"X (e,)
= (Adu(Mg™") 0 €*X) (p(9)", €) (6.1.17)
= Adr(Mg™)) 0 p(9)" s (€ X))

We observe that this equals (é*X), for any choice of e and €’ if and only if
(*X), = Adg (Mg™)) o p(9)”, (6*X), VgeG. (6.1.18)

This is merely the constraint which states that (é*X) . is an invariant element in
the (anti-)representation g — p’(g) ® Ad(A(g~")). By putting g = exp(tIg) and
taking the derivative with respect to t at ¢ = 0, this implies the infinitesimal version
of this invariance:

0= [X(IB), (€*X)y]| — pu(IB)*, (€* X ). (6.1.19)

Conversely, by the exponential map, infinitesimal invariance under linear represen-
tations integrates to finite invariance for connected G. 0

Thus, whenever (6.1.12) is satisfied for an X € QF

hor

(B, h)(HA) it has frame-
independent components with respect to local sections of @ and their images in 5
under the bundle reduction A.

Assuming this property in (6.1.9), the field strength of A+ X gets simplified.

Corollary 6.1.3: In the above situation, if X has frame-independent components,
the local representation of the field strength of A’ = A + X reads

e FAY = o e FA 4+ d(e,*X) , A (Bo)"
(6.1.20)

(T (2" X),, + [(007X), (25°X),]) @ (B)" A (80"

L1
2
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Frame-independence of the components of X allows us to assign values to these com-
ponents, which depend solely on the position x € M and not on the specific choice of
local frame, as long as this is a local section of Q. Of course, this is still not possible
explicitly on a generic manifold. However, for example if there are trivial directions
in M, i.e. topologically MP = M¥xI;x ...xIp_g, where I1,...,Ip_g are intervals
with coordinates rq,...,rp_q, we could put (é*X), = (6*X),(r1,...,7p-q).

In particular, this applies to the conical 6-manifolds, which we constructed in chap-
ter 5. Therefore, we now specialize to manifolds of that type. That is, we consider
6-dimensional Riemannian manifolds of the type of a ¢-cone over a 5-manifold, i.e.

(M°, g) = (Cy(MP), g) = (M° I, ¢* g5 + dr?). (6.1.21)

We assume that M° is endowed with an SU(2)-structure Q, which is a reduction of
an SU(3)-structure P. As the gauge principal bundle we choose

B =P. (6.1.22)
Thus, we have the following structure of bundle reductions:
Q x SU(2)
SO(M°®,g) x SO(6) P x SU(3)

(6.1.23)

All the maps in this diagram are inclusions as subbundles or subgroups, respectively,
just as they occurred in chapter 5.

To fit the above considerations, we consider a connection A € C(Q) on Q, extend it to
A € C(P) and perturb it by a frame-independent X € Q} (P, su(3))5VE)Adsu),
Taking r to be the natural coordinate on the interval I, we restrict ourselves to the
case, where

(€*X), = (€*X), (r) (6.1.24)

depends on the cone direction only. We again take y = (a,5) and i = 1,...,6.
Furthermore, since X is frame-independent, we drop the sections e, in the remainder
of this chapter wherever displaying them is not necessary, but keep in mind that
all the local expressions are written down with respect to certain choices of local
sections. We thus write

(X)) =Xy, (eo)p=e¢€, and (B,)" = p". (6.1.25)
If we assume that Xg = 0, the field strength of A + X reads
Eo*FAYX )\, o e *FA 4 (EaTX# + T, X(;) ®dr A B

+ % (Tum X+ [XV’X"»]) ®B" A B"
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= o, FA (6.1.26)

1

2
1

+3 (T“,m Xy + [ X0, Xu] = N (Lo, X, + TS5, X(;)) ® B A B".

— (Lo, X+ Ty, Xs) @ (B A 85— 5 N%,, 67 2 5)

We have added and subtracted 3 N*,,. Lo, X, @3 A 3%, wherein N € Q?(MS, TMS).
The additional term appearing in the second line above is intended to make the 2-
form part of that line satisfy the instanton condition. This anticipates that for
particular choices of N, the locally defined forms given by

1
B AR — SN B AT V=15 (6.1.27)

will be instantons for the SU(3)-structure P on the respective 6-manifolds.
Finally, the splitting
su(3) = su(2) ®m (6.1.28)

is SU(2)-invariant, as observed in chapter 3. From section 3.4 one can see that, as
vector spaces, m ~ R®. Moreover, as representations of SU(2) on R5,

(Adsy3))isu) = P|su2), (6.1.29)
where p is the standard representation of GL(5,R?) on RP. Therefore,
TM® = SO(M®, gs5) % (50(5),5) R’
= Q X (sp(2)) R° (6.1.30)
= Q X(5U@),Adsu5) ™
We take {I;|i = 6,7,8} to be a basis of su(2) and {I, | = 1,...,5} to be a basis
of m, such that In = (I,,1;) is a basis of su(3) that is adapted to the splitting

su(3) = su(2)®m. By f,5° we denote the structure constants of su(3) with respect
to this basis.

Thereby, we have arrived at the statement which will be key to the instanton con-
structions in this chapter.

Proposition 6.1.4: Let M5 be the ¢-cone over a 5-manifold M with the following
data:

(1) M® carries an SU(2)-structure Q and an SU(3)-structure P satisfying the
relations (5.1), as well as an SU(3)-structure P, which may differ from P.

(2) AeC(Q) is an instanton for P'.

(3) There is an N € Q*(MS TMS) such that for n = 1,...,5 the local forms
BH A BS — %N“,m BY A B satisfy the instanton condition induced by P’.
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6 Construction of Instantons

(4) X € QL (P,su(3))5VG)Adsue) has frame-independent components with re-

hor
spect to sections of Q, 1. e.

0= [L, Xp] — pu ()", X0 = [Li; X | = f3," X Vi=6,7,8, (6.1.31)
where, additionally, X¢ = 0, and the X,, depend on the cone direction only.

(5) The local representations of the 2-form
1 o
N =5 prae) (ad(X) A (X)) € Of,, (P, su(3)) T Adsue) (6.1.32)

satisfy the instanton condition induced by P'. The components of N are given
by Ny = €*N (ey, e) for local sections e of Q.

Then, if X satisfies the equations
[ X, X0 +T5,, X — N®,, (Lo, Xe + T%%, Xp) = N, (6.1.33)

A+ X € C(P) is an instanton for P'.

Proof. Under the assumptions of the proposition, the field strength of A+ X is given
by (6.1.26). If A is an instanton itself, the first term in that equation satisfies the
instanton condition. Due to (3), the second term satisfies that condition as well. All
that is left is to require the third term to be an instanton, which is true if (6.1.33)
and assumption (5) are satisfied. O

A few comments are in order. First, note that for any Lie group G with Lie algebra
g one can show (cf. section 4.3)

[Ad(g)(&1), Ad(g)(&2)] = Ad(g)([&1,&2]) Yge G, &, & e (6.1.34)

This, together with the frame-independence of X with respect to Q, implies that
N satisfies the frame-independence condition for Q as well. With respect to local
coframes (8 adapted to Q its coefficients read

1 1 .
Ny = 5 77au) (X K1) @ B 1 57 = 5 fun X XD @B A B (61.35)

In principle, one could drop assumption (5) and just require the coefficients of the
last term in (6.1.26) to be the coefficients of an instanton. The problem is that upon
choosing X, : M® — m, the commutator [X,,, X,] has components in su(2) as well
as in m. We try to cancel the contributions in m among the torsion and N-terms,
thus leaving the part in su(2) untouched. Therefore, we have to require that part to
satisfy the instanton condition, which is precisely property (5) of the proposition.
Finally, the first three assumptions are properties of the geometries we are dealing
with. In order to find new instanton solutions on a geometry with these properties,
we have to find a set X7, ..., X5, which satisfy (4), (5) and (6.1.33). This will be
the concern of the remainder of this chapter.
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6.2 Sasaki-Einstein Structures and the First Instantons

Let us now try to find geometries that satisfy the assumptions of proposition 6.1.4.
From our elaborations in chapter 5 we already know that the conical SU(3) 6-
manifolds constructed there satisfy the first assumption. This section is devoted to
assumption (2), namely to finding a connection on an SU(2)-structure Q on M5,
which is an instanton for the SU(3)-structure P’ that defines the geometry of M.
Note that we do not require Q to be contained in that SU(3)-structure, as we clarify
at the end of this section.

The first part of this section consists of reproduction of results from [2], whose
combination with our findings in chapter 4 will enable us to find connections as
desired. In [2], the following notion is used:

Definition 6.2.1: Let MP be a manifold, and let p,v,p, X run from 1 to D. Be
V a covariant derivative on TM stemming from a connection on F(TM), and be
R e Q%(M, End(TM)) its field strength tensor. We say that R has the interchange
symmetry if

Ruvor = Roxw Yp,v,p,A=1,...,D. (6.2.1)

Let us explain the relevance of this property in the present context. Consider a
G-structure Q on M, and let 8 be an adapted coframe. On a connection on T'M the
instanton condition (4.1.17) precisely requires the 2-form indices of R with respect
to [ to represent a matrix in g < so(D). However, if V even stems from a connection
on Q ¢ F(TM), the second pair of indices of R yields a matrix in g, and, thus, the
interchange symmetry implies that the connection is an instanton. We highlight this
as

Lemma 6.2.2: Let Q be a G-structure on M and V a covariant derivative on T M
stemming from a connection on Q.

If the field strength tensor of V has the interchange symmetry, V is an instanton
for Q in the sense of (4.1.17).

Therefore, it is desirable to find such connections on T'M. Here the following propo-
sition taken from [2] is very helpful:

Proposition 6.2.3: Let V! stem from a connection on SO(M,g), i.e. Vg =0 for
all t, with totally antisymmetric torsion by(T?) =t P for some P € Q3(M) and real
parameter t. Suppose that when t = 1, P is parallel, that is, V' P = 0. Then RY'
has the interchange symmetry for all t.
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Proof. See proposition 3.1 of [2]. O

We, hence, aim at finding connections on F(T'M) compatible with the G-structure
Q and having totally antisymmetric, parallel torsion. We know that these will be
instantons for @ by proposition 6.2.3.

Let us come back to the special spaces constructed in chapter 5. Therefore, from
now on we again take a,b,... running from 1 to 4, u,v,... from 1 to 5 and [, 7, ...
from 1 to 6.

First, let us consider a Sasaki-Einstein 5-manifold M® with SU(2)-structure Q. As
explained in [17], Sasaki-Einstein SU (2)-structures on 5-manifolds are defined by a
Killing spinor. From this spinor, all the defining sections of Q can be deduced [2].
It has been shown in that reference that one can construct a covariant derivative
VP on TM with respect to which the Killing spinor is parallel. Thus, V¥ originates
from a connection I'” on Q. The torsion of I'” is given by [2,12]

3
T, = 1 Pow B A Y and  T5 = P 9 A B, (6.2.2)

where we used
P =1 AW (6.2.3)

Thus, I'" is a connection on Q, but it does not have totally antisymmetric torsion.
Note that, although this connection preserves the Sasakian structure of M°, it does
not coincide with the characteristic connection of a Sasakian manifold one could
have constructed from proposition 3.3.5 (see also [28]). The latter is a connection
belonging to the U(2)-structure that is the Sasakian structure, but fails to be an
SU (2)-connection on Q (cf. [2]).
Consider a deformation of the Sasaki-Einstein SU(2)-structure to another SU(2)-
structure Q,, which is defined by (7, 0?w®), where p € R, is taken to be constant.
We have already seen in section 4.3 that such deformations stem from transforma-
tions (3¢, 8°%) +— (0B% B°). As o € R, is constant on M?®, we directly see that
I'? still preserves n and p?w® for a = 1,2,3. Hence, I'" is a connection on Q, for
all values of p. As this transformation changes the metric, it has an effect on the
Levi-Civita connection and thereby on the torsion of I'P. It turns out that this is
completely antisymmetric and proportional to P for [2,12]
— o= 2 6.2.4
0=0="7 (6.2.4)
As I'P preserves P, this totally antisymmetric torsion is parallel with respect to I'"
in addition. Therefore, for this value of g, Rpr has the interchange symmetry due
to proposition 6.2.3 and, thus, I'" is an instanton for Q, according to lemma 6.2.2.
Nevertheless, since we made use of the Sasaki-Einstein SU(2)-structure Q = Q,—1
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in the constructions in chapter 5, we need to find instantons for Q, rather than Q,,.
As we explained in section 4.2, the instanton condition (4.1.17) induced by Q is
equivalent to

x (n A Fy) =—Fa, (6.2.5)

whence locally
W(Q) = spang {81 — 5%, 813 + %, B12 — g3}, (6.2.6)
As this bundle is invariant under 8% — o 5%, we directly infer
W(Q) =W(Q,) VoeRy, (6.2.7)

which we have shown in a very abstract manner in section 4.3 already. This means
that I'" is an instanton for all Qp, 0 R,

In summary, I'” is a connection on the principal bundle Q of the Sasaki-Einstein
SU (2)-structure, and it satisfies the instanton condition induced by this structure.

We proceed to the extensions of the Sasaki-Einstein 5-manifolds to 6-dimensional
spaces. First, consider M®xI with the direct-product metric g = g5 + dr?. As we
argued in section 5.1, Q on M?® directly lifts to an SU(2)-structure Q on M5 x1I.
Recall that we refer to this lift of the constant family 9, = Q to M 5%I as the
pushforward SU(2)-structure on M°xI. Furthermore, recall that

SU(2) — SO(5) < SO(6), (6.2.8)

where SO(5) is embedded into SO(6) as upper-left block matrices. The adjoint
bundle Ad(Q) consists of elements of the form [q, 30w EM], where

o _ [E(’;V 8} € 50(6), (6.2.9)

with {E#* |1 < p < v < 5} the standard basis of so(5) as in section 4.1, and o, is
such that 3 0, E*” € su(2) < s0(6). These components o, are the same as for the

5-dimensional SU(2)-structure Q. Thus, the components of the 2-forms in W (Q)
are the same as in five dimensions as well, whence locally

W(Q) — SpanR{ﬂM _ 523’ 613 + 6247 612 o 634}- (6210)

Here the % are coframes on M°xI adapted to the SU(2)-structure Q.

From this we infer that the lift of I' to the direct product M?>xI (or the pullback
along the projection to the slices) is an instanton for Q. We denote the lift of I'P
to the direct product again by I'C. This lift is a connection on F(T(M®xI)), but it
restricts to a connection on Q, i.e. I’ € C(Q).
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The procedure employed in chapter 5 then was to apply deformations to the push-
forward SU (2)-structure Q, just as considered in chapter 4. The deformations we
used in chapter 5 can in general be decomposed into two parts. First, there is a
transformation of the type

R:M°xI — GL(6,R), R(z,r)= V(”J’T) Ls J (6.2.11)

that changes the metric from the direct product metric to the ¢-cone metric. Second,
we applied transformations

T : M°xI — SO(6,R), (6.2.12)

which leave the metric invariant, but still deform the SU(2)-structure.
The deformations we employed in chapter 5 deformed the pushforward SU(2)-
structure Q on M®xI into other S U(2)-structures Q' = Ry Q. Therefore, proposi-
tion 4.3.1 tells us that the maps inducing these transformations satisfy

R, T : M°xI — Ngrer)(SU(2)). (6.2.13)
Furthermore, as R is proportional to the identity on £',..., 3%, we can infer that
d :50(D) — 50(D), pap B — R pap RY; BV (6.2.14)

leaves the subspace su(2) < so0(6) invariant. This does also hold true for 7T, as this
is SO(6)-valued (see proof of corollary 4.3.5). Corollary 4.3.5 then implies that all
these SU(2)-structures on M°x I define the same instantons, as

W(Q)=Ww(Q) (6.2.15)

for all these structures. Thus, the lift of I'¥ to M°xI an instanton for all SU(2)-
structures Q' such that (Q, Q') satisfy the normal deformation property introduced
in definition 4.3.2. In particular, this holds true for all the SU (2)-structures that we
constructed in chapter 5.

Finally, we use proposition 5.1.1 to extend the SU(2)-structures considered above
to SU(3)-structures on Cy(M?®). Recall that Q" = P’, whence

W(Q) = W(P). (6.2.16)

This implies

Proposition 6.2.4: T is an instanton in the sense of (4.1.17) for all the SU(2)-
structures on M°xI obtained by lifting the Sasaki-Einstein SU(2)-structure of M?
to M®x1I and applying normal deformations leading to new SU(2)-structures.
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Moreover, T'T is an instanton for all the SU(3)-structures constructed as extensions
of these SU (2)-structures by means of proposition 5.1.1.

In particular, this holds true for the SU(2)-structures and the SU(3)-structures on
Cy(M?) constructed in chapter 5.

Therefore, on all these spaces, together with I'P’, assumptions (1) and (2) of propo-
sition 6.1.4 are satisfied.

This is a good point to review and summarize the geometric structure that we are
concerned with. The frame bundle F(T(M?®xI)) provides the geometric background,
where M? carries a Sasaki-Einstein SU(2)-structure. The embedding of M?® induces
the pushforward SU(2)-structure Q (we drop the hat now). By proposition 5.1.1
we know that this is contained in an SU(3)-structure P. Furthermore, the lift of
the Sasaki-Einstein canonical connection to the direct product is a connection on
Q,i.e. TP € C(Q). This is equivalent to the fact that if e : U — F(T(M®°xI)) is a
local section of Q or, in other words, a local frame adapted to the SU(2)-structure
Q, then

TP € QY (U, su(2)). (6.2.17)

We applied normal deformations to Q induced by h : M°xI — Ngre,r) (SU(2)),
thus constructing a second SU(2)-structure @ = Rp, Q from Q. It is important
to note that, in general, the restriction of I'Y to the principal subbundle Q' of
F(T(M°xI)) is not a connection on Q' (cf. section 2.2). To illustrate this, consider

Ryoe:U — Q' x— Ry e(x), (6.2.18)

which is a local section of Q' by construction. By the properties of connection
1-forms, we have

(R oe)* T = Ad(h™) o TF + h* pcr (o ) (6.2.19)

As h is Ngre,r)(SU(2))-valued, the homogeneous term is still a locally defined
su(2)-valued 1-form on U. The inhomogeneous term, on the contrary, may take
values anywhere in the Lie algebra of the normalizer of SU(2) in GL(6,R). Hence,
in general, we can use I'” as an su(2)-valued connection on Q only. In section 4.3
we constructed a bijection fgj from C(Q) to C(Q'), and we could apply it here in
order to obtain connections on Q'. The map fgj takes a particularly simple form
if h is constant, since in this case the inhomogeneous term is absent. In this case,
fo,n is merely the identity and connections on Q are connections on Q' as well. We
will encounter such a situation in section 6.6.

Another particularly interesting case arises if h is further restricted to take values
in the centralizer of SU(2) in GL(6,R), as we will consider in section 6.4.2.
Finally, Q" extends to an SU(3)-structure as well. This is the SU(3)-structure that
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defines instantons W(P") > W(Q) =W(Q)

F(T(M°xI))

I'P su(2)-valued here ™

M>5xT

Figure 6.1.: Geometric structures on F(T(M°x1))

we use for the geometry of M°x1I and, in particular, to define the instanton condi-
tion. The choice of the gauge principal bundle is independent of the choice of the
SU (3)-structure. Nevertheless, we have to make sure that the sections e, that we
used in section 6.1 are sections of the very same principal SU(2)-bundle which the
instanton we are going to extend is an connection on. This is necessary since we
explicitly used this property in the derivation of proposition 6.1.4, especially when
we compared the pullback of the connection form with the local components that
we used in the Maurer-Cartan identity. The latter have to be taken with respect
to the same frame that we used as a section to pull the connection form back with.
The geometric structures on the frame bundle of F(T(M®xI)) are illustrated in
figure 6.1.

We finish this section with a remark on instanton conditions on 6-manifolds with an
SU (3)-structure P defined by (g,w,2). As argued in section 4.2, the condition that
the 2-form part of Fy takes values in W (P) is equivalent to #(w A Fu) = —F4. A
straightforward computation shows that this in turn is equivalent to

QAFps=0 and wAwA Fy=0. (6.2.20)

Applying the exterior covariant differential to the first equation as well as using the
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Bianchi identity and Q A F4 = 0 implies
A A Fy = (W +iWD)w nw+ (W +iWg) aw) AFa=0.  (6221)
Therefore, solutions to (6.2.20) automatically satisfy
(Wy +iWy ) Aw A Fa=0. (6.2.22)

On ordinary 2-forms o € Q%(M), this looks like an additional constraint for Wy # 0.
However, as for field strengths of connections there is the additional Bianchi identity,
this is just a consequence of the instanton condition (6.2.20). Differentiating the
second equation does not yield anything new, since both its sides are six-forms
already.

Nevertheless, we could weaken the instanton condition to the requirement

QA Fy=0, (6.2.23)
which would imply
((Wl+ +iW )wAaw+ (W) +iWy ) A w) AFap=0. (6.2.24)

We might then define a different instanton bundle by

~

W(P)={oce@®M)|Qro =0, (W] +iW )wrw+ (W5 +iWy)Arw) Ao =0}.

(6.2.25)
Generically, the imposition of w A w A F)4 = 0 would be an additional constraint
on A and W(P) # W(P). For Wy # 0 and W5 = 0 using (6.2.24) reproduces the
original instanton condition (4.1.17).

6.3 Instantons on Kahler-Torsion Sine-Cones

Having developed the background for certain constructions of instantons very gen-
erally in the previous two sections, we now consider the explicit case of the Kéhler-
torsion sine-cones constructed in section 5.2.

Recall that we had

(C¢(M5), g9) = <M5X(O,A7r), A? sin (%)295 + dr2>. (6.3.1)
For the metric we can compute
g = A? sin (%)2 g5 + dr? = A% sin (%)2 (95 + (As,i:(/D)Q> 652)
= A? sin (%)2 (95 + (dT(r))2),
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where

7(r) = log (2A tan <2C\>> < r(r) = 2A arctan <%> (6.3.3)

This implies that there exists a conformal equivalence
f:M°<(0,AT) — M°xR, f(x,r) = (z,7(r)), (6.3.4)

between the sine-cone and the cylinder over M®. We push the SU(3)-structure on
the Kéhler-torsion sine-cone forward to the cylinder along f and search for instantons
for this SU(3)-structure on the cylinder. Their pullbacks to the sine-cone will then
be instantons for the Kéhler-torsion SU(3)-structure.

We aim at finding solutions to
# (WA Fa)=—Fa. (6.3.5)
Therefore, the instanton bundle on the cylinder can locally be written as
W (P) = spanR{ﬁM _ % g8 4 g2t 512 g1 gl5 | 526

16 _ 325 7335 _ 046 545, 536 L g2 L o34 56 (6.3.6)
BYO— 57, B — g0, p10 4 g0, =124 = g 570},

from which we deduce the non-vanishing components of N appearing in (6.1.26):

1
N°y = §U3ab and  N%, = —n’%. (6.3.7)

By the pushforward of the SU(3)-structure, these are the same on the sine-cone and
on the cylinder in the respective coframes. N is a globally well-defined tensor field,
for we can write it as

1
N=—§§®w3—n/\J, (6.3.8)

where £ = —e5 is the vector field dual to 5. Thus, all geometric assumptions of
proposition 6.1.4 are satisfied, and we are left to find suitable X, solving the re-
maining constraints and the matrix equations.

On the cylinder, I'" is a connection living on the pushforward SU(2)-structure Q
and, in addition, an instanton for P. Note that we have to perform our compu-
tations in a frame adapted to the SU(2)-structure on the cylinder, as explained in
the previous section. That is, we use pushforwards of local frames adapted to the
SU (2)-structure on M?® to the cylinder, together with eg = d,. The non-vanishing
components of the torsion of ' with respect to such a frame on the cylinder are
just given by

T5ab = 2P5ab = _2773ab and T%, = §Pa5b = 577 b (6.3.9)
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Recall that the matrix equations on the X, read

[Ii)X,u] = fip,l/XIh

(6.3.10)
[Xu, X, = —T%, Xo+ N",, (Lo, Xx + T%, Xp) + N
These have to hold for all ¢ = 6,7,8 and u,v = 1,...,5. Now we consider an ansatz
which locally is of the form
r=T"+x,®p8" (6.3.11)
Substituting N, T' and N, the matrix equations become
[[i7 X/,L] = fip,y Xl/7
[X X]:—§ sy, — e, Ly
55 Xb oMo Ra =M% = Xas (6.3.12)
1 d
[Xava] = 2773ab X5+ 5 nsab d7X5 +Nab-

We have to make an ansatz for the X,,. First, let us clarify which generators of su(3)
we are using here. We take the Killing-Cartan orthonormal basis from (3.4.11) and
rescale it as in (3.4.13) with the choice

v = —% and 0 = J_r2\1/§, (6.3.13)
such that we obtain
T = =20’ = —fap” and T%, = 2773@1; = —f5" (6.3.14)
Then we employ the ansatz
Xao(7) = (1) Lo, Xs5(1) = x(7) I5. (6.3.15)
¥, x : R — R are two real functions. From this we obtain
Nap = 0* fop" 1 (6.3.16)

which can be seen to satisfy the instanton condition from (3.4.11) and (6.3.6). More-
over, the frame-independence condition is satisfied, since

(i, Xal = % [i; La] = ¢ £;," b = fi” Xp- (6.3.17)

Hence, all assumptions of proposition 6.1.4 are indeed satisfied, and we are left to
solve the matrix equations on the X,. Upon inserting our ansatz they reduce to the
coupled system of non-linear, ordinary differential equations given by

b= Sul-1), k=107 -x). (63.15)
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Here we denoted the derivative with respect to 7 by the dot. These equations co-
incide with those obtained in [2] for the case of the SU(3)-structure on the cone
over M® pushed forward to the cylinder. This is not surprising as the two SU(3)-
structures induced on the cylinder by the conformal equivalences of the sine-cone
considered here and the cone considered in [2] coincide. In principle, we have repro-
duced the reduction of the instanton equations carried out in [2].

Solutions to the above differential equations are given for example by

(x(7), ¥(1)) = (0,0), (6.3.19)
(x(7), ¥(7))) = (1, +1), (6.3.20)
(x(7), ¥(1)) = (C exp(—47), 0). (6.3.21)

Here, C € R is a constant of integration. The first solution corresponds to the un-
perturbed I'”’, which must occur as a solution for consistency because, as we know
already, I'" is an instanton.

The solution (x,?¢) = (1,1) is shown to be the pullback to the cylinder of the
Levi-Civita connection of the metric cone in [2]. Since the metric cone over a
Sasaki-Einstein manifold is Calabi-Yau, it has holonomy SU(3). Furthermore, the
Levi-Civita connection always has the interchange symmetry, and if it is compatible
with the SU(3)-structure, it thus is an instanton itself. Additionally, recall that the
Kéhler-torsion SU (3)-structure on the sine-cone coincides with the pullback of the
Calabi-Yau structure from the metric cone. Therefore, as the instanton condition is
invariant under conformal transformations, the pullback of the Levi-Civita connec-
tion is an instanton on the Kahler-torsion sine cone.

The solution (x,%) = (1,—1) reflects the fact that the defining sections of any
SU (2)-structure are invariant under flipping the signs of ey, ..., e4 of all the bases
of the original structure. Therefore, carrying out the computation in these other
sections of the SU(2)-bundle Q, we would have obtained the same solution (1,1),
which expressed in the original basis reads (y, ) = (1, —1).

The gauge field configurations corresponding to the third solution solve the instan-
ton equation, but will not be of finite action due to the exponential factor, whence
they are of less physical interest.

Analytical solutions to the above differential equations on y and 1 other than these
have neither been found in [2] nor in this work. For a slightly more extensive treat-
ment of this system including some remarks on numerical solutions, we refer the
reader to [2] and [39]. In the latter, K&hler-torsion sine-cones have been constructed
over Sasaki-Einstein manifolds of generic dimension. Furthermore, the instanton
solutions we found here have been shown to admit a generalization to arbitrary di-
mensions, as well.

Note that the solutions (x, ) = (0,0), (1, £1) correspond to constant X,. Hence,
they correspond to lifts of connections living on M? to the cylinder, which are in-
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stantons for the SU(2)-structure on M?°.

All these instantons are connections on a gauge bundle with gauge group SU(3) over
a 6-dimensional manifold, which carries a Killing spinor € [12]. In particular, all of
the solutions we obtained satisfy

V(Fa)(€) = 0. (6.3.22)

For this reason, they may well be valuable starting points for the construction of
solutions to the heterotic supergravity equations (1.3.5) on spaces with conical sin-
gularities. Finding such solutions to the instanton equations has been the first step
towards the heterotic supergravity configurations found in [2—-4].

6.4 Instantons on Nearly Kahler Sine-Cones

6.4.1 Reduction for Pushforward SU(2)-Structure

We turn our attention to the nearly Kahler sine-cones of section 5.3. Here we
have Wi # 0 and Wy = 0 (see definition 3.1.5). Hence the weakened version of
the instanton condition coincides with the ordinary instanton condition (4.1.17) or,
equivalently, #(w A Fq) = —F4.

As before, we denote the lift of the constant SU(2)-structure on M?> to M°xI by
Q, where I = (0, A 7). Coframes adapted to Q are denoted by 3”. Recall from the
constructions in sections 5.2 and 5.3 that, in order to obtain the nearly Kéahler sine-
cone from this SU(2)-structure on M°x I, we have to employ two transformations.
We have to rescale the coframes with

R: M°xI — GL(6,R), R(z,r) = [A sin (%) 1s 1] (6.4.1)

and to rotate them via

T M5%I — SO(6), T(z,r) = exp (i n?). (6.4.2)
We denote by B2 the images of the # under these transformations, such that all
the defining sections of the deformed SU(2)-structure Q' = Rr—1z-1 Q take their
standard components with respect to 8s. This does then hold true for the defining
sections of the nearly Kéahler SU(3)-structure P’ that Q' extends to as well. There-
fore, N has precisely the same components (6.3.7) as in the previous case, but this
time with respect to the coframes ;. Again, N is globally well-defined.
The instanton which we perturb by X is the lift of 'Y to the direct product, just as
in the previous section. From section 6.2 we know that this will be an instanton for
the nearly Kéhler SU(3)-structure on the sine-cone.
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However, since I'" is su(2)-valued on Q rather than Q’, we have to perform com-
putations in the original coframes [ (as explained in section 6.2, in particular see
figure 6.1). In the matrix equations (6.1.33) we, therefore, have to use the compo-
nents of the tensor field N with respect to the untransformed coframes 3. These

N%, = — A sin <%) (cos (%) 7% + sin <%) n1“b>,

NS, = %A sin (%) (cos (%) n, + sin (%)nlab)

The torsion of ' has components as in (6.3.14) with respect to f. Employing the

read

(6.4.3)

reduction procedure of section 6.1 to an ansatz which locally reads
r=T"+X,® 8", (6.4.4)
we arrive at the following matrix equations for the X,, = (e*X)(e,):

[, Xu] = fin” X0, (6.4.5)
3 . (T r LT d
[X5,Xa] =5 ngba Xy, — A sin (X) <cos (X) 773“,, + sin <K> nlab) EXb’
1 LT r LT d

[Xa, Xp| = 2m3 5 X5 + 5 A sin <K) (cos <K) n’,, + sin (K)nlab) 5X5.
Note that in the large-volume limit A — oo, where the nearly Kahler SU(3)-structure
on the sine-cone approaches the Calabi-Yau SU (3)-structure on the metric cone over
M?, these equations smoothly tend to the equations that we would have obtained
by carrying out the reduction procedure starting from I'” on the Calabi-Yau cone.
For the ansatz X, = ¢ I, and X5 = x I5 the only solutions are given by

(x,¥) =(0,0) and (x,%) = (1,+£1). (6.4.6)

The gauge fields that these solutions correspond to are, of course, precisely the
same configurations as the ones obtained in the last section as instantons for the
Kéhler-torsion SU(3)-structure. This is not surprising, for these gauge fields are
lifts of instantons on M? to the direct product. Therefore, they are instantons for
the pushforward SU(2)-structure Q on M° xI. However, we explained in section 6.2
how all the normal deformations of Q that we considered in chapter 5 define the
same instantons, i.e. W(Q) = W(Q') for these SU(2)-structures. Thus, the gauge
fields given by ' +4 I, @8+ x I5®3° with (x, %) = (0,0), (1, +1) will be instantons
for all the SU(3)-structures constructed in chapter 5.

As we thus expect these solutions to arise in every situation where we try to extend
I'”, the more interesting question is whether there are solutions apart from these.
In order to answer this question, we can pursue at least two different strategies.

First, we could try to employ more general ansdtze for the X,, aiming to find
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solutions to the matrix equations that depend on the cone coordinate. Such solutions
will be obtained in section 6.5. Second, we could try to find other gauge bundles
than @ and P. In the case of the geometries at hand, we are given at least one
additional natural candidate, namely Q" = Rj Q and its extension to a principal
SU(3)-bundle P’. This strategy we will follow in the next subsections.

6.4.2 Canonical Connection of the Nearly Kahler Sine-Cone

The reason that we used the extension P of the pushforward SU(2)-structure Q
on M®xI as the gauge principal bundle was that we generically do not know an
instanton on any other bundle that we could try to extend. Although in section 4.3
we constructed a bijection between C(Q) and C(Q') for all normal deformations O’
of @, this map does, in general, not map instantons to instantons. Here, however, we
appear to be in a more special situation that allows us to circumvent this problem
by observing a simpler relation between C(Q) and C(Q’). The central element is the
following lemma:

Lemma 6.4.1: Let (B, m, M, H) be a principal fiber bundle over M with a principal
G-subbundle (Q, 7, M,G), and let (Uy, Sy )sex be an open covering of M by local
sections of B. Consider a map h : M — Cy(G), x — h(z), where Cy(G) < H is
the centralizer of G in H.

Then we have

(1) Q' = Ry, Q is a principal G-subbundle of B, and (Uy, Ry 0 S5)sex is an open
covering of M by local sections of Q'. Furthermore, the transition maps of the
coverings (Uy, S5 )oex and (Uy, Ry 0 So)gex coincide.

(2) The family (Uy, h* 1) oex @5 the local representation of a globally well-defined
ZeQ (B, 5) A with respect to (Uy, Ry, © 8¢ )ess, i- €.

hor
(Rhose)" E=h*un, (6.4.7)

where pyr is the Maurer-Cartan form on H.

Proof. Ad (1): Since the centralizer of G in H is contained in the normalizer of G
in H, we know from proposition 4.3.1 that @' = Ry, Q is a principal G-subbundle of
B.

Consider two local sections s,s’ : U — Q of Q with s’ = R, o s for some transition
map g : U — G. Then we have

Rpos' =Ry,oRy05=Ry-1,,0R,05=Rgo(Ryo0s). (6.4.8)

In the last identity we used that h(x) is central for G for all x € M. This shows (1).
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Ad (2): Since Cy(G) < H is a Lie subgroup of H and h takes values in Cg(G)
exclusively,

W um = h* pog @), (6.4.9)

where now pic,, (@) is the Maurer-Cartan form on the Lie group Cp(G). Note that
tey () takes values in Lie(Cy(G)) only, and that Adp restricted to G acts trivially
on this Lie subalgebra of . Thus, for all g € G,

W = h* ey ) = Adp(97) o h* ey ) = Adi(971) o h* . (6.4.10)

Note that a family of local h-valued 1-forms =, is a representation of some globally
defined =€ Q} (B, h)H:Ad1) with respect to (Uy, Ry, © S¢)oex: if and only if [18]

hor
=, = Adp(gop ') 0 E, (6.4.11)

for s, = R,
We set

gop © Sp and o, p € 1.

E,=h*ug VYoeX. (6.4.12)

From (1) we know that Ry, 0 so = Ry, o (R} ©s,), whence (6.4.10) implies

Gop

Eo =h*pug = AdH(gapil) oh*ug

= Adp(gop ) 0, (6.4.13)

Therefore, there exists a globally well-defined = e Q} (9B, h)H:A440) satisfying
(Rhos,)*E=E,=h*ug Voel, (6.4.14)
whence we have shown (2). O

Lemma 6.4.1 has the following important corollary:

Corollary 6.4.2: If in the above situation A € C(*B) is a connection on B that
restricts to a connection on Q, then

A=A—Z (6.4.15)

is a connection on B that restricts to a connection on Q'. Its local representation
with respect to Ry o s, is

(Rhose)*A=5,"A VoeX, (6.4.16)

since h takes values in Cp(G), only. From this it follows that also the field strengths
have the same components with respect to S, and Ry, o s,

(Rp o 80)*FA = s,*FA Voex. (6.4.17)
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Proof. The statement that A is a connection on B is a direct consequence of the
fact that the inhomogeneous terms dropped in (6.4.16) are the local representations
of the globally well-defined form = € Q} (%, )H:A44) and that C(B) is an affine
vector space over Q}LOT(%, h)(H’AdH). As h(x) is central for G for all x € M and as
s*A is g-valued, we also see from (6.4.16) that A is g-valued on Q' and therefore
restricts to a connection on Q.

We have

(Rp058,)*A=(Rpo0s,)*(A—2)
= AdH(h_l) 0585 A + h*,uH — h*/LH (6.4.18)
= 5,7 A. (6.4.19)

In the las equality we used that h is central for g. This directly implies
(Rp, 0 sg)*FA = 5,*F VYoey, (6.4.20)
thus completing the proof. O

This yields a bijection from C(Q) to C(Q’), which may, in general, differ from the
one constructed in section 4.3. Due to the coinciding local representations of the
field strengths of A and A, this bijection even maps instantons to instantons.

One crucial application of this lemma to our situation is the following: Consider the
manifold M5 x I, where again I = (0, A 7). Let Q be the SU(2)-structure obtained as
the lift of the constant family given by just the Sasaki-Einstein SU(2)-structure on
M?® to M°x1I in the sense of proposition 5.1.1. This is a principal SU(2)-subbundle
of the principal GL(6, R)-bundle F(T(M°xI)) and we have the embeddings

SU(2) — SO(5) « SO(6) — GL(6,R). (6.4.21)

Now consider the two transformations defined by R and T as introduced in the
preceding subsection. The essential observation is that both are central for this
embedding of SU(2) into GL(6,R). Regarding R, this can be seen from the fact
that R is proportional to the identity on SO(5). Further, w? = %772;“/ B A BY s
invariant under SU(2), as it is a defining section for the SU(2)-structure on M?°.
Since T is generated by n?, it commutes with all of SU(2) as well.

By corollary 6.4.2 this implies that if (T'")#,, are the components of '’ with respect
to (B, then the same components taken with respect to Bs = (T o R)(B) define
a connection which is compatible with the rescaled and rotated SU(2)-structure
underlying the nearly Kéihler SU(3)-structure. We denote this connection by I'g, o).
Let us for a moment distinguish between components that are computed with respect
to B and (s, respectively, by endowing indices with respect to the former with a
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tilde. That is, for es = Rp, o e we write 3 = (8#) and 85 = (B8%). Then, the local
representation of I'y,(2) with respect to ey is given by

Lo, = (ToR)"; (L7)y (R™M T 1), = (D7) (6.4.22)
By construction it is a connection on the principal bundle Q'.

Even more, we know that on every nearly Kéhler manifold there exists a connection
preserving the SU (n) structure, namely the Bismut connection, or the canonical con-
nection, of the nearly Kéhler structure, which we already encountered in section 3.1.
We will denote this connection by I'y,3). Having anticipated the existence of this
connection, we now compute its connection 1-form by means of the Maurer-Cartan
identity. We have

d3e = d((T o R)% 47)
=d(ToR)% A BE +(ToR)% dﬁg
= d(A sin (%) exp (27;\ 2)a ) 5b

+(ToR)% (—(PP)MBCJFT’;)

ToR)% (NP (R7 o T~1)% A B (6.4.23)
3 r 3a 3 5 a
+ (55 ot ()7 — gp ') 52 2 8

= — o) Aﬁb—%co‘c< )(ﬁ“AB6+n3a ﬁbABE))
1 cot (A) 7% B A B+ ~ e, B0 A B

2A
1
(nQ% BY A BS —n' B A ﬁ§>,

C2A

as well as

I

g d(A sin (%) ﬁ5>
B2 A B2 = Asin () ' B2 A Bi’ (6.4.24)

= ot (5) (87 B8+ 7P B2 A BL) + 5 nlan B2 1 B
and

dps = d*r = 0. (6.4.25)
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Introducing the complex coframes
O =By +ifB5, 05 =B +iBs, 07 =i(B]+iB) (6.4.26)

and ¢ = %, this yields

9% f‘511(2)1 ' COt 65 f‘514(2) 2 cot]{g&)el L/\92 9;
d 9? = f‘5u_(2)21 f‘5u( )2 g COt 55 _%9 + %92 A 03
92 Cotjgcp) 0; 21[\9§ cot( )92 1 191 i cot( ),35 93
canonical su(3)-connection I‘su(;; on the nearly Kéahler sine-cone
N
N 03 A 04 (6.4.27)
6L A 62
—_—

NK-torsion T'

We put a hat over the components of a connection to indicate its representation
with respect to the complex basis 6, rather than the real basis .

First, note that, upon complex conjugation, the matrix of 1-forms in the first line is
mapped to minus itself, whence it is from su(3) as it is necessary for a connection
on P’. However, from corollary 6.4.2 we only know that I’ su(2) 1s a well-defined
connection. That this also holds true for I'y,3) becomes clear if we isolate the
1-form part and decompose it into the real basis, thus giving

1Aﬂsu(g) = fsu(?) + B, ® BY, (6.4.28)
where
1 [ 0 0 —2cot(p) ; [ 0 0 —2cot(p)
B = — = _
TN T 1|, Ba=gi| O 0 1
| 2cot(p) —1 0 | —2cot(p) —1 0
1 [0 0 -1 ; [0 0 1
B3 =—10 0 —2cot(p) |, By=—10 0 —2cot(p)
2A 2A
[ 1 2cot(y) 0 |1 —2cot(p) 0
. [ cot(yp) 0 0
i
Bs = A 0 cot(¢p) 0 . (6.4.29)
| 0 0 —2cot(yp)

Here one can check that the B, satisfy the frame-independence condition (6.1.12),
whence B, ® ! is the local representation of some B € QF (P, su(3)) V) Adsu),
Therefore, I'y,(3) is a well-defined connection on P’, and we have

Cou(s) = Dau2) + B € C(P'). (6.4.30)
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Lyy(2) = I'Y — E su(2)-valued here
[syu(3) su(3)-valued here

/7 e

Ql

F(T(M5xI))

I'? su(2)-valued here 7r

MP5xT

Figure 6.2.: Geometric structures on F(T(M Ox I )) for nearly Kéhler sine-cone

From (6.4.27) we see that the torsion of Lsu3) s totally antisymmetric. Thus, we
found a connection that preserves the nearly Kéhler SU(3)-structure and has to-
tally antisymmetric torsion. Due the uniqueness of such a connection [27,28], this
must then coincide with the canonical, or Bismut, connection of the nearly Kéhler
structure.

In fact, one can derive these explicit results without using the general statements
of lemma 6.4.1 and its corollary 6.4.2. This route is taken in [40]. There we com-
pute (6.4.27) without previously checking I's(3) or I'sy(2) to be a well-defined con-
nection. We then observe that the torsion in (6.4.27) is invariant under SU(3) and,
in particular, that it transforms as a tensor. The Maurer-Cartan identity implies
that I's,(3) is a well-defined connection, and, finally, the frame-independence of the
B,, yields that I'y,(9) is a well-defined connection as well.

The torsion in (6.4.27) is invariant under SU(3) and, therefore, parallel with respect
to [gy3)- As it is, in addition, totally antisymmetric, we infer from proposition 6.2.3
that I'sy3) is an instanton on the nearly Kéhler sine-cone over a Sasaki-Einstein
5-manifold. We again illustrate the geometric setup on F(T(M?°x1I)), see figure 6.2.

We, thus, have seen an application of lemma 6.4.1 that allows us to construct con-
nections on SU(2)-structures other than the pushforward SU(2)-structure Q very
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6.4 Instantons on Nearly Kihler Sine-Cones

easily. In the above case,

Plsu(2) (d(To R) (T o 72)_1) = % (cot (%) 5y + %nzab )dr =0, (6.4.31)
whence Iy, (9) coincides with the connection on Q' that we would have obtained upon
application of proposition 4.3.3.

The particular example of Iy, (2) considered in this subsection is a connection living
on Q' such that it preserves this deformed SU(2)-structure. Therefore, it will be
compatible with its ambient nearly Kahler SU(3)-structure P’ as well, and so will
be all of the extensions of Iy, to su(3)-connections living on P’. In particular, this
holds true for the extensions of I'y,(2) that we would use in the reduction procedure.
Note that in the cone limit A — oo, the torsion in (6.4.27) tends to zero, such that
I'su(3) approaches the Levi-Civita connection of the Calabi-Yau metric cone over M 5,

From a string theoretic point of view, the canonical connection of the nearly Kéhler
structures might be of interest, as it might serve as the connection V* (cf. equa-
tion (1.3.1)) in explicit model building. Being a connection on the SU(3)-structure
principal bundle P’, it even preserves the Killing spinor which defines P’, wherefore
L) already yields solutions to the first and the third equation in (1.3.1).

6.4.3 Reduction for Deformed SU(2)-Structure

In the last subsection, we constructed a connection I,y on the SU(2)-structure Q'
This is the SU(2)-structure that extends to the nearly Kahler SU(3)-structure on
the sine-cone over the Sasaki-Einstein M°. From corollary 6.4.2 we know that the
local representations of its field strength with respect to the §s coincide with the
local representations of the field strength of 'Y expressed in the respective 5. Now,
since I'” is an instanton on the nearly Kihler sine-cone, so is Lau2)-

Hence, the efforts of section 6.4.2 led to two additional explicit instantons for these
nearly Kéhler spaces. The canonical connection of the nearly Kéahler structure has
already been known, and has been known to be an instanton for this structure (see
e.g. [2]). In contrast, 'y, exists due to the very special geometry of the nearly
Kahler sine-cone and appears to have been unknown previously.

We would like to revisit the reduction procedure for the instanton equations intro-
duced in proposition 6.1.4. In section 6.4.1, we obtained instanton solutions on the
nearly Kéhler sine-cones using I'. However, these were just the extensions of I'"
found in section 6.3 already, and we argued that these extensions of I'"’ will be so-
lutions in all the cases we consider here.

Nevertheless, we can also use I'q,(2) in this procedure, i.e. try an ansatz of the form

I'= Fgu(g) + XM ® ﬁf; (6.4.32)
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6 Construction of Instantons

Note that we have to use local frames that are sections of Q' now, in order that
the formulas derived in section 6.1 apply directly. That is, we have to carry out the
component computations with respect to (s.

By the decomposition (6.4.28) and the fact that the B, satisfy the condition for
frame-independence, we even are provided with an ansatz for the B), that we know
will lead to non-trivial solutions of the resulting matrix equations.

First, we compute the torsion Tg,(9) of I'y,2). We again indicate components that
are taken with respect to the untransformed frames by a tilde over the respective
indices. The Maurer-Cartan identity yields

gl = d((T o R)"; B)
= d(ToR)", A B” + (T o R)"; dB”

. d(A sin (%) exp (27;\ ) ) 57 (6.4.33)
+(ToR)", ( - (FP)V,} nBP+ TD)

1
= — T, A B+ (A<cot<A)5“+2772“)drAﬂ;’—i-T“).
Thus, if we express both Ty, () and T" with respect to (s, we obtain

Ty, =T To2)’ =0, Tuw’ =0,

vp vp? vp 2) 6p

Ty, = 5 (o0t () % + 37)

As we are still considering the same nearly Kéhler SU(3)-structure as in section 6.4.1,

(6.4.34)

the components of N are unaltered, and the general matrix equations for the per-
turbation X take the form

[Ii7 X,u] = fiuy Xy,

1 4 r d 2
[Xa, Xo] = 5 7 (5 cot () X5 + A dTXs) — 20 X5 + N (6.4.35)
1 d 3 1
6. 5) = = g % (eon () X028 530) + g X0 = gty

Now we have already seen that the B, satisfy the first of these equations. This will
still hold true for the choice

Xu(p) = ¢(p) Ba(p) and  X5(p) = x(¢) Bs(p), (6.4.36)

where we again make use of ¢ == %. As one can check, the matrices X, yield

9 1+ 4 cot(yp)

Nl“/ = _w(so) 4 A2

fo' L, (6.4.37)
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6.4 Instantons on Nearly Kihler Sine-Cones

whence, for this choice of the X,,, the 2-form part of N takes values in the instanton
bundle W (P’) only, just as desired. Inserting this ansatz for the X, into the matrix
equations (6.4.35), we obtain, amongst certain differential equations, the algebraic
constraint identity

) (12(0) ~ x(9)) = 0. (6439
which reduces the differential equations to
X(p) = 9(p) =0 and  P(p)((p)* —1) = 0. (6.4.39)

Here the dot denotes the derivative with respect to (. The solutions to this system
of equations are read off to be

(1, x) = (0,0), (6.4.40)
(¥, x) = (1,1), (6.4.41)
(1, x) = (=1,1). (6.4.42)

First, (1, x) = (0,0) just reproduces Iy, (). This solution must occur for consistency,
since I',(2) was an instanton already.

Second, (¢, x) = (1,1) reproduces the su(3)-valued instanton I'y,3) of section 6.4.2.
Consequently, we could have found this canonical connection of the nearly Kéhler
SU(3)-structure P’ as an instanton extension of I'g,(9). This yields a fundamentally
different proof that I'y,(3) is an instanton for P’, without employing proposition 6.2.3,
but using the much more explicit methods developed in section 6.1.

Third, the solution (¢, x) = (—1, 1) realizes another instanton on the nearly Kahler
sine-cones we are considering. This, however, again arises due to the reflection
symmetry in the 8¢, which we had discussed in section 6.3 already.

Furthermore, note that if we express I'y,2) with respect to 3, it still has non-trivial
components in the cone-direction, whence it is not a lift of a connection on M?.
That is, the connections we consider here really live on Cg, (M 5) rather than MP°.
This is because Q' is a principal bundle that is not a pullback of a principal bundle
over M?. Generically, the right-action of h does not commute with the right-action
of SU(2), but here h takes values in the centralizer of SU(2). Therefore, Q and Q'
are isomorphic as principal bundles in the case at hand. Note that the map between
connections on @ and on Q' constructed in lemma 6.4.1 and its corollary 6.4.2
is merely the pullback of connection 1-forms along this isomorphism of principal
bundles. Nevertheless, the isomorphism stems from M?® x I rather than M?®, whence
the gauge field configurations really live on the 6-dimensional space.

The instantons we constructed here are isolated in the sense that none of them
interpolates between two different solutions. In the limit A — oo, however, the strong
algebraic constraint (6.4.38) becomes trivial. Hence, we might expect that there is
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6 Construction of Instantons

a richer space of solutions to the differential equations which the matrix equations
reduce to in this limit. In particular, instanton solutions which interpolate between
the instantons constructed from constant ¢ and y could be expected to occur.

Again, all of the above solutions are connections on a principal SU (3)-bundle which
is defined by a Killing spinor. The gauge field configurations constructed here solve

V(Fa)(e) = 0, (6.4.43)

since we know that they satisfy the instanton condition in the sense of (4.1.17).
Hence, all of them could prove useful in constructions of solutions to the field equa-
tions of heterotic supergravity (1.3.5) on spaces with conical singularities.

6.5 Interrelations and the Large-Volume Limit

Here we clarify the interrelations between the structures that we encountered on the
since-cone over M?®. This will lead to a better understanding of the large-volume
limit A — co. Additionally, we observe a relation between instanton extensions of
I'” and Lsy(2) on the nearly Kéhler sine-cone that allows us to infer new solutions
for both cases directly.

Let us once more consider the Kéhler-torsion SU(3)-structure sine-cones over a
Sasaki-Einstein 5-manifold as investigated in sections 5.2 and 6.3. There are several
SU(2)- and SU(3)-structures that we encountered in this situation. First, there is
the pushforward SU(2)-structure Q on M®x1I, where I = (0, Axw). This is the lift
of the constant family of SU(2)-structures consisting solely of the Sasaki-Einstein
structure of M® to M5xI. Let U € M® be an open subset, and let e : UxI — Q
be a local section of the principal fiber bundle Q. With respect to this frame, the
sine-cone metric reads

a2 (T2 2 a2 (T2 I v 6 6
Gein = A Sm(A) g5+ dr? = A sm(A) S BrR®B+ @B (65.1)
Recall that the lift of T'F to the direct product M®xI is a connection on Q, i.e.
rec(Q). (6.5.2)

We also considered the cylinder M®xR. Here proposition 5.1.1 applies as well, and,
therefore, we can lift the Sasaki-Einstein SU(2)-structure as a constant family to
M?xR, too. This SU(2)-structure we call Qz. The lift of I'¥’ to the direct product
M?P xR is a connection on Qz in complete analogy with the previous case. In order
to distinguish the lifts to these two spaces, we denote the lift of I'" to the cylinder
by T'Z. That is,

b ec(Qy). (6.5.3)
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We then deformed the pushforward SU(2)-structure Q on M?°xI by means of a
right-action on F(T(M?°x1I)) induced by R as in (6.4.1). The image of this map we
called @' = Rp-1 Q, and this was the SU(2)-structure underlying the Kéahler-torsion
SU (3)-structure. Moreover, this transformation maps e to a frame adapted to the
sine-cone metric, i. e. writing ¢/ = R -1 o e we obtain

Gsin = 84 B @ B (6.5.4)

Making use of lemma 6.4.1 and corollary 6.4.2, we see that there exists a connection
on Q' given by
*Tou) = €"TF — (R™Y* ugriem)

_ TP (6.5.5)
Furthermore, there is the conformal equivalence
f:M3xI — M°xR, (z,7) — (r,7(r)) (6.5.6)

from the sine-cone to the cylinder over M? (cf. equations (6.3.3) and (6.3.4)). If gz
is the cylinder metric on M° xR, we have

1

f*QZ — m gsin~ (657)

Let ez be a local section of Qz, i.e. a local frame on the cylinder adapted to the
pushforward SU(2)-structure, and let 5z be its dual coframe. Then,

*oft _ 1 1. B
"0z = x sin(%) BE=F, (6.58)
or, equivalently,
fe(€) = f« (A sin <%) e:}) =ezp (6.5.9)

The frames & define yet another, intermediate, SU(2)-structure on M°. We denote

~

this new structure by Q. Another way of viewing Q is as

0= (f1)4(Q2). (6.5.10)
Local frames adapted to O and Q' are related by
/ L (6.5.11)
Er = N €. LO.
B Asin(y)
In particular, defining
1

h:M°xI — M°xI, (z,7)— 1g (6.5.12)

A sin(f)
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6 Construction of Instantons

we see that (é, Q') satisfies the normal deformation property with respect to h.
Note that h is central for SU(2) and SU(3) in GL(6,R). Thus, the extensions P
and P’ of O and Q' , respectively, to SU (3)-structures satisfy the normal deformation
property with respect to h as well.

The conformal equivalence, as an isomorphism of the principal fiber bundles @, and
Q, allows us to pullback I‘g from the cylinder to the sine-cone. Thereby, we obtain
a connection on O that we denote by f *FIZD . We have

e (f*TL) = (f+8)* T = e4*TL. (6.5.13)

As h takes values in Cqpgr)(SU(2)), we can apply lemma 6.4.1 and corollary 6.4.2
to f *I‘g and h in order to obtain a connection fﬁu(g) on Q. The local representation
of this connection reads

e/*fsu(2) = *(f*Ty) — W*pgrer) = € (f*Ty) = e2*T5. (6.5.14)
By construction, we can choose
e = (eys,dr) and ez = (eyps,dr) (6.5.15)

as local sections of Q on M®xI and Qz on M®xR, respectively, where e,s is a
local frame on M?° adapted to the Sasaki-Einstein SU(2)-structure. With respect to
these sections, the lift of I'Z to the direct products satisfies

(e*FP>|(x7T) = (6M5*FP)‘36 = (ez*Fg, )|(x,7') Vre I, TelR (6.5.16)
whence the connections induced from Q and Qz on Q' coincide, i. e.
Tau(2) = Lau(2)- (6.5.17)

Note that the pullback along f and the transformation induced by h are applicable
to connections on the SU(3) extensions of Q7 and é as well, such that connections
on Py induce connections on P’.

The following diagram illustrates the interrelations between these geometric struc-

tures:
r’ Lau2) firf ———r1h
oL L S SR
L L L L
b e Ry, 5 e P,
c(P) — o) — L e(py)

(6.5.18)
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Let us investigate the respective instanton conditions. The goal is to find instantons
for the Kéhler-torsion SU(3)-structure P’ on the sine-cone over M°. These are
defined via the instanton bundle W (P’) = A2T*(M®x1I). As Ry, is a rescaling of all
the elements of the local frames é (and, therefore, takes values in the normalizers of
SU(3) as well as SU(2) in GL(6,R)), we have

W(P')=W(P) and W(Q)=W(Q). (6.5.19)

In section 6.3 we tried to find instantons for P, on M°xR. Form P, = f>.<73 it
follows that

J*(W(Pz)) = W(P), (6.5.20)
whence the pullbacks of Pz-instantons via f*, or, more precisely, via the isomor-
phism of principal fiber bundles that it induces, are instantons for P and hence as

well for P’.
In particular, assume that A = Fg + X, i.e. locally

ez*A = ez T + X,(1) ® B, (6.5.21)

is an instanton solution on the cylinder over M?. In order to transport this solution
to @', we have to employ the pullback via f and rescale via h, obtaining a connection
A’ with the local representation

e*A =& (f*(Ly + X)) — h* ugrer)
1
= Lou2) + (ASIH(A) XM(T(T'))> ® 8™, (6.5.22)

Therefore, there is a direct one-to-one correspondence of solutions obtained in sec-
tion 6.3 on the cylinder and solutions that we would have obtained upon applying
the reduction procedure to I'y,(9) directly on the sine-cone. Upon using an ansatz
A" = Ty + X with X, = ¢(r) [, and X5 = x(r) I5 with respect to ¢’ on the
Kéhler-torsion sine-cone we would, thus, have obtained the solutions

(¥(r), x(r)) = (0,0), (6.5.23)

(¢(r), x(r)) = (A Sii ol sil(g) > (6.5.24)

C cot (Z)*
(¥(r), x(r) = (0, 16/\511(10“(1)) (6.5.25)

which are the transformations of the solutions (6.3.19). One can check, that these
are indeed solutions to the matrix equations one had obtained on the Kéhler-torsion
sine-cone.
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In particular, in the large-volume limit A — oo this correspondence is preserved.
Therefore, the instanton extensions of I'y,(2) on the sine-cone tend to the instantons
that one obtains on the Calabi-Yau metric cone by transporting the solutions in
section 6.3 from the cylinder to the cone directly.

On the nearly Kahler sine-cone, the definition of I'y,) did not only include the
inhomogeneous term due to rescaling, but also the inhomogeneous term due to the
rotation (6.4.2). In the large-volume limit, the rotation as well as its inhomogeneous
contribution to I's,2) approach zero, and B, — %Iu. Hence, together with the
relations pointed out in this section, one sees that in this limit the constructions of
sections 6.3 and 6.4.3 coincide.

Another very interesting interrelation of the instanton extensions of connections on
the tangent bundle that are related as in lemma 6.4.1 is the following. Denote
the deformation that deforms Q into @ by h : M°xI — Ngpr)(SU(2)). The
computations leading to (6.4.34) show that if h = h(r) and L(r)(es) = es, we will
have

Toue, = (dh™1h), (6.5.26)

(with respect to €’), while all other torsion components are unaltered, i.e. equal to
those of I'".

Recall that if e : U — Q is a local section of Q, and ¢’ = Rjoe: U — Q' is a local
section of @', then

€ =ph)"uew =h" e, (6.5.27)
and
B = (p7'(m), ) 8" = (), B (6.5.28)

Further, recall that Rpr = Rp_,, and that N is a tensor.
Consider an extension of Iy, ) with local representation X, ® B'". We have

X, ®@p" =", X, p" (6.5.29)

Now we insert this into the reduced expression for the field strength of I'" us-
ing (6.1.26). The crucial observation is that the inhomogeneous terms arising from
L, h reproduce the additional components Tsu(g)“&/, and the factors of A1 yield the
transformations from the components with respect to e to those with respect to ¢’.
Explicitly, marking tensor components with respect to €’ be a prime,

Lo, (), X,) @ (87 7 85— 5 N 57 1 5)
;
(€001 % 5 (5 05— L)

= (Lo, (7)) X+ (", (£0, X,) ) @ (87 A B° = 5 N7y 87 A B) (6.5.30)
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1
7N/Vo-,.g Blo‘ A B/H>,

— (Lo X0 + T, Xs) ® (B 1 8° - -

and by the same calculation,

% (T“m (A X + [(h 9N, X, (17 X ] = N& Lo, (), X,\)>
® BY A B~ (6.5.31)
1
= (T’“M X+ [ Xy Xu] = N, (Lo, X+ T’ X(;)) ® B A B

Thus, the local representations of the field strengths of I'’ + (h™1)*, X, ® B* with
respect to e coincides with that of T'yy ) + X, ® " with respect to e’. This implies
that there is a one-to-one correspondence between instanton extensions of '’ and
Psy2)- However, note that, although the local representations of the extensions
coincide, the 1-forms they correspond to live on different principal SU(3)-bundles
P and P’. They satisfy

X =e*X = (Rpoe)*X' = Ad(h™ ) o e*X'. (6.5.32)

Therefore, as long as h is not central for SU(3),

X#X e (F(T(M5><I)),g[(6,R) (6.5.33)

) (GL(6,R),p)
Yet, their local representations coincide and thereby yield a simple identification of
the instanton solutions.
Using this statement, we can deduce a solution to the system of matrix equations
that arose in the reduction procedure as applied to I',(2) on the nearly Kahler sine-
cone. We simply take the local representations of the extensions X of I'" from
section 6.4.1 and use them as local representatives of an extension of Iy to P’
rather than P. By the above considerations we know that on P’ there exists an
instanton extension X’ of I'su(2) with local representations with respect to ¢’ given
by

(€*X)(ep) = X, = (RT' T, (e*X)(e) (6.5.34)

in the terminology of section 6.4.1. Indeed, direct insertion of

i M (e () - ) ),

X
Xy = Alsblg()};) (cos (i) Iy + sin (i) I4>7
X3 = AZZ()A) (cos (i) I3 + sin (i) [1), (6.5.35)
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»(r) r _ r
= A (o) o ) ).
7 Asin(g) \ P \aa) T gy )
¥(r)
Xe= V)
"7 A sin(%) >
into the matrix equations (6.4.35) yields precisely the solutions

(¥(r),x(r)) = (0,0), (£1,1) (6.5.36)

in consistency with the results of section 6.4.1 and this section.

Conversely, the solutions for extensions of I'y(2) in section 6.4.3 translate to instan-
ton extensions of I'’. These have to be taken with respect to the local frames e
adapted to Q. They read

X1 =(r) (cos (i)gll — sin (i)glg,),
Xo =(r) (cos (i)gfg + sin (i)gh),
X3 =(r) (cos (%)313 + sin (i)gh), (6.5.37)
Xy =(r) (cos (i)gh — sin (i)zglg),

and as well lead to the solutions

(¥(r), x(r)) = (0,0), (+1,1). (6.5.38)

One can check that the corresponding X, satisfy the matrix equations 6.4.5. Note
that, although the functions that parametrize the ansatz are constant for these so-
lutions, the coefficients X, depend on r in a non-trivial manner.

Thus, if the deformation h is central, one can transfer the solutions for an instanton
perturbation to the deformed SU (2)-structure. Note that, while an instanton exten-
sion X may have constant local representations in the first case, its transformation
to an instanton extension on P’ may have much more intricate coefficients, as the
above examples illustrate.

6.6 Instantons on Half-Flat Cylinders

To finish this chapter with, we turn our attention to the half-flat cylinders of sec-
tion 5.4. Recall from proposition 5.4.2 that

__4@2—3
2 T 73,

(Wi —2drAm.), and W3 =0 (6.6.1)
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for these spaces. According to our considerations at the end of section 6.2, we
can now consider the instanton bundle to be either W (P’), defined by the ordinary
bundle construction as in chapter 4, or W (P’) as in (6.2.25), given by the requirement

QAap=0 (6.6.2)
and the derived equation

0=dQ/\,u:((Wfr+in)w/\w+(W2++iW{)/\w>/\,u

(3 +20° 40° -3
=z( W AW+

(wg’ —2dr Am.) A w) Al (6.6.3)

3
:i<29w§/\wg’+7w§/\dr/\nz>/\y
1%

3i /402
= (? ps6 + pig + M34> volg.

Thus, we have
W(P') = spang {814 — 62, 813 + 920, 412 — g4, B15 1 G20, 1O _ 2,
1 1 3
B B0, P+ SR H gAY - AL (664)

Let us here consider this weaker version of the instanton condition, for it might allow
for more interesting solutions. Hence, with respect to the coframes f,,
2 0?
b 3b 5 3
N5a =N g and N ab = Tn ab* (665>
These are the components of the global tensor field

2@2

N=_2%
3

EQuWi—n Al (6.6.6)

Note that W5 vanishes for g = @, such that for this special value of p the instanton
bundle W (P) coincides with W(P), and the components of N become the same as
considered in the previous cases.

As in sections 6.3 and 6.4.1 we consider the lift of I'" to the direct product M?®xI.
We have seen in section 6.2 that this is an instanton for the SU(2)-structure Q'
underlying the half-flat SU(3)-structure on the cylinder. That is, the 2-form part of
Rrp lies in W(Q’). This bundle is contained in W(P’ ) as we see from (6.2.6). Hence,
I'" is an instanton for P’, independently of which of the two notions of instantons
we use.

The canonical procedure would be to employ the reduction of the instanton equa-
tions to I'P as a connection on Q and thus on its SU (3) extension P. However,
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~ P

Q/

F(T(M5xI))

I'? su(2)-valued here @

M>5xT

Figure 6.3.: Geometric structures on F/(T(M®°x1I)) for half-flat cylinder

performing the reduction and trying to find solutions to the X, = (e*X)(e,), we
only found the solutions of sections 6.3 and 6.4.1. As explained there, these are lifts
from M? to M® x I of instantons for the Sasaki-Einstein SU (2)-structure on M?> and,
therefore, have to be present here as well. Nevertheless, more sophisticated ansétze
might yield more interesting extensions of I'" to P.

Here, as in section 6.4.2, it is valuable to take a closer look at the geometric construc-
tion of the half-flat SU(3)-structures P’. From the introduction of these geometries
in section 5.4 we recall that the normal deformations used in their construction are
induced by constant maps h : M°xI — Ng £6,R)(SU(2)). This is crucial here due to
the following reason: Let e : U — Q be a local section of Q. Then Rjpoe : U — Q' is
a local section of @'. Consider a connection A € C(Q) on Q. This can be extended
to a connection on F(T(M®xI)). As h is constant we have

(Rpoe)*A=Ad(h™") oe* A+ h*ugrer) = Ad(h™") o e* A4, (6.6.7)

and as we know that h takes values in the normalizer of SU(2) in GL(6,R), we infer
that (Ry, o e)*A is su(2)-valued. Therefore, we can use I'" as a connection not only
on Q, but also on @' and try to extend it to an su(3)-valued connection on P’. Once
again, we illustrate the geometric situation, see figure 6.3.

Note that we have to perform the computations in the frames 5,. To this end, we
will use an ansatz of the form

r=r"+x,®p3" (6.6.8)
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Expressed in the coframes 3, the torsion of I'Y reads:

3
T = 20n'y and Th, = —Q—inba. (6.6.9)

From this we obtain the matrix equations on X as follows:
[Iia X}L] = fip,l/ Xl/u

3 d
[X5,X,] = % n', Xy, + 3.0 7,Xb, (6.6.10)
2

20 d
[Xa, Xp] = — 200" X5 + ?ngab ar

As an explicit ansatz for the X, we consider

Xi1(r) = ¥(r) (cos(¥) I; —sin(V) I3),

X3(r) = ¢(r) (cos(¥) I3 + sin(¥9) I),

Xo(r) = ¢(r) (cos(¥) Iz + sin(¥) L), (6.6.11)
Xy(r) =9(r) (cos(ﬁ) Iy — sin(9) Ig),

X5(r) = x(r) Is,

introducing a constant parameter ¥ € [0,27]. One can check that the frame-
independence condition is satisfied for all ¥ € [0, 27] and that the 2-form part of N
takes values in W (P’) exclusively. Explicitly, we have

Ny = 0(r)* f," L. (6.6.12)

Thus, this is a valid ansatz for our reduction procedure for the instanton equations.
Inserting this ansatz into the matrix equations leads to

X = ;’2 (cos(9)? — sin(9)?) 2, (6.6.13)
Y- z cos(9) sin(9) ¥? | (6.6.14)
cos(¥) = — %ﬂ (sin(9) — o cos(¥) ) , (6.6.15)
sin(9) ¢ — gw (cos(9) — o sin(9) ) . (6.6.16)

By the dot we abbreviate the derivative with respect to r.
As it turns out, the equations lead to contradictions except for ¥ = 7, ?jf. For
these values, we have % = cos(¥) = £sin(d¥), and the first two equations yields
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7,/} = x = 0, while the last two coincide.
Apart from the trivial solution, this reduced system admits the solutions

: (6.6.17)

p=+1, x=-". (6.6.18)

I'” provided us with an instanton for the half-flat structure P’ and even for the
underlying SU(2)-structure Q’. As the 2-form parts of their field strengths has van-
ishing 6-components, the above four instanton solutions are in fact even instantons
for the SU(2)-structure Q'. Therefore, by proposition 4.3.5, they also are instantons
for the unrotated SU(2)-structure Q on M®xI. Since the rotation (5.4.1) is con-
stant as well, the instanton solutions obtained here do neither depend on r, nor have
non-vanishing 6-components. Thus, these connections are pullbacks of connections
living on the principal SU(3)-bundle ¢, *P’ over M?>, where 1, is the embedding of
M? into M®x1I as the slice at cone parameter r € I. However, this means that
we found new instantons on the Sasaki-Einstein 5-manifold. Note that as X is an
Ad-equivariant 1-form on P’, it can in general not be transported back to P via Ry,
since the adjoint action of h preserves SU(2) only, rather than SU(3). Therefore,
although I'" restricts to a connection on both Q and Q’, the extensions of I'"’ to
connections on P’ found here do not restrict to connections on P and vice versa.

I'” is an instanton for both notions of the instanton condition mentioned before,
and so are the new solutions obtained here, because they can be seen as lifts of
instantons from M?°. This may be of interest since the original version (4.1.17) of
the instanton condition is equivalent to

V(Fa)(e) =0, (6.6.19)

where € is the generalized Killing spinor defining the half-flat SU (3)-structure P’ on
the cylinder. Recall that in section 5.4 we argued that I may be any open interval
in R, and that the geometric structure may be extended to the boundary of M?®x I
smoothly. This also holds true for the solutions I'' + X which we constructed in
this section since they can be seen as living on every slice separately. Thus, we
have obtained instantons on smooth, compact, 6-dimensional manifolds with half-
flat SU(3)-structures. These, again, may well prove useful in string model building.
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Chapter 7

Conclusions and Outlook

This thesis was primarily concerned with G-structures and instantons. In proposi-
tion 4.3.1, we found a certain class of deformation that take G-structures to different
G-structures over the same manifold and with the same G. These were induced by
the right-action with maps h : M — Ngp D,R)(G) taking values in the normalizer of
G in GL(D,R).

We provided a bijection from connections compatible with the original G-structure
to those preserving the deformed G-structure. Moreover, we classified the subset
of these deformations for which the instanton bundles of the original and the de-
formed G-structures coincide. Although this turned out to be very helpful in the
constructions of chapter 6, the investigation of these deformations of G-structures
is not completed.

For example, one could ask whether there are more general transformations leaving
the instanton bundle invariant, and whether the instanton bundle determines the G-
structure up to these transformations. The answer to the first question might be to
replace h by maps to Ngr(p,r)(G)/(GxG), as pointwise left- and right-multiplication
of h(z) by elements of G does not change the image of Ry Q and has no effect on
the instanton bundle.

However, the question for the generic structure of the instanton moduli space of
a G-structure appears to be much more intricate. Nevertheless, for classes of G-
structures with the same instanton bundle the instanton moduli spaces coincide.
The above considerations might provide a partial answer as to what these classes
are.

In chapter 5, we introduced a formalism to construct 6-dimensional SU (3)-structure
manifolds of topology M?®xI from 5-dimensional manifolds M?®, where M? is en-
dowed with a one-parameter family of SU(2)-structures. We showed how the de-
formations of G-structures introduced in section 4.3 may be used to construct such
families of SU(2)-structures from a given SU(2)-structure, which we took to be
Sasaki-Einstein. We arrived at the same 6-dimensional spaces upon applying the
rotations as a family and lifting the result, as well as upon lifting the constant
SU (2)-structure followed by applying the rotation as a single transformation on
M5xI.

By this procedure, we constructed a Kéhler-torsion SU(3)-structure on the sine-
cone over M?®, which is conformally equivalent to the Calabi-Yau metric cone over
M?®. Employing a certain rotation on this sine-cone, we transformed this SU(3)-
structure into the nearly Kéhler structure on the sine-cone which had already been
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constructed in [24] by means of flow equations. Both of these geometries on the sine-
cone approach the Calabi-Yau metric cone over M? in an appropriate large-volume
limit. Furthermore, we constructed a two-parameter family of half-flat structures
on cylinders utilizing another deformation of the constant lift of the Sasaki-Einstein
SU (2)-structure to M®x1I. All of these spaces can be extended to compact coni-
folds, which are valuable candidates for internal spaces in string model building.
Therefore, this procedure might prove useful in producing candidates for internal
geometries in flux compactifications. They seem particularly useful for the construc-
tion of explicit solutions to several geometric equations, for they have a topologically
trivial direction without having too simple a geometry.

The constructions in chapter 6 illustrated how the geometry of these spaces may
be utilized in order to find solutions to geometric equations. Here we started with
a formal treatment of the reduction procedure introduced in [1] for the instanton
equations.

The results of section 4.3 enabled us to directly see that the lift of the canonical con-
nection on the Sasaki-Einstein manifolds to M® x I provides us with an instanton for
all the SU(3)-structures obtained before. From this we reproduced the instantons
that one would have obtained by pulling back the instantons found on the metric
cone in [2] along the conformal equivalence.

On the nearly Kéhler space, employing the same ansatz as before we only found
constant perturbations of the lift of the Sasaki-Einstein canonical connection. Via
the results in section 4.3 we could infer that these solutions would be present for all
the geometries we constructed in chapter 5. We constructed the canonical connec-
tion for the nearly Kéahler structure and proved it to be an instanton using methods
of [2]. This connection was in two different ways seen to split into an instanton for
the SU(2)-structure that underlies the nearly Kéahler structure and a part that we
could use as an ansatz for a perturbation of this instanton. Here we could use the
reduction procedure to give an independent proof that the nearly Kéhler canoni-
cal connection is an instanton and to find another solution. Although the matrices
which we used in the ansatz depended on the cone coordinate, the functions we used
to parametrize our ansatz turned out to be constant for the solutions. Thus, these
instantons appeared to be isolated in the sense that there are no additional solutions
interpolating between them.

However, we observed that there is a direct correspondence between instanton ex-
tensions in sections 6.4.1 and 6.4.3, and transferring the respective solutions we
obtained additional instanton extensions in both cases. These depend on the cone
coordinate non-trivially.

On the half-flat cylinders over M® the instantons we found even turned out to stem
from M?® rather than the 6-dimensional space.

The methods of chapter 6 may well be generalized. One possibility would be to
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consider more general gauge bundles B that reduce to Q' in the terminology of
section 6.1, as for example viable quiver bundles. It also seems plausible that there
are general statements similar to proposition 5.1.1 that construct Go-structures on
MO xT from families of SU(3)-structures on M, and Spin(7)-structures on M7 x T
from families of G-structures on M’. Combining such statements with the results
of section 4.3 and section 6.1 might turn out to be as useful for constructing inter-
esting explicit geometries and instanton solutions on them as it turned out to be for
lifts of SU(2)-structures to SU(3)-structures.

It exceeded the scope of this work to employ the instantons we obtained in attempts
to solve the field equations of heterotic supergravity, i. e. to find vacuum solutions of
heterotic string theory by manners similar to those in [2-4]. Nevertheless, this could
prove very fruitful, as the 6-manifolds we constructed are endowed with a (general-
ized) Killing spinor, a three form, which could be used as flux, a set of instantons
and even a distinguished function r that might be useful in constructing the dilaton.
In particular, on the nearly Kéhler sine-cone, the canonical connection could be a
valuable candidate for V. The gauge field could then be taken to coincide with
this connection in the hope for simpler solutions, but one might as well try to use
the other instantons that we found here. This seems to be a promising application
of the findings of this thesis.
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Appendix A

Principal Fiber Bundles
and Connections

A.1 Principal Fiber Bundles and Associated Bundles

Principal fiber bundles and connections are the central foundations of the mathe-
matics used in this thesis. For this reason, we review the mathematical formalism of
principal fiber bundles, associated bundles and connections. Throughout this thesis,
we use the notation of [18], where all this formalism is presented beautifully. Thus,
this section is a very condensed summary of the first three chapters of [18]. Proofs
and details left out are to be found there or in other mathematics textbooks intro-
ducing the language of principal fiber bundles.

There are two crucial ingredients to this formalism, namely the notion of fiber bun-
dles over a manifold and that of an action of a Lie group on a manifold. We start
with the definition of a fiber bundle.

Definition A.1.1: A locally trivial fiber bundle (or just fiber bundle) is a
quadruple (E,m, M, F') with the following properties:

(1) E, F and M are smooth manifolds.

(2) m: E— M, e — w(e) is a surjective submersion.

(8) There exists a family {(U;, ¢;)}ien, where the U; provide an open covering of
M, and the ¢; are diffeomorphisms

bi N U;) — Ui x F, e — ¢;(e) (A.1.1)
that preserve the base point. That is,
pru, © QZ)Z = 7T| 7= 1(U;)- (A12)

FE is then called the total space of the fiber bundle, whereas F' is called the typical
fiber of E. M is called the base manifold and the collection {(Uj, ¢;)}icn is a bundle
atlas of E. Any map satisfying the third axiom of the definition is called a local
trivialization of F, since it diffeomorphically maps a subset of F to the trivial fiber
bundle U x F.

Apart from the trivial example of direct products, vector bundles are a very impor-
tant class of fiber bundles. Here, the fiber F' is a vector space, and the transition
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maps between different local trivializations are linear automorphisms of this vector
space.

In the following example we introduce a fiber bundle which is important through-
out this text. It lies at the very fundamentals of the notion of a G-structure and
yields the motivation for the abstract construction of associated vector bundles to
be introduced later.

Example A.1.2: Consider a K-vector bundle F of rank k € N over a manifold M.
K may be R or C. Let us consider the set of bases of the fibers of E. They constitute
the frame bundle of E. It is defined as the disjoint union

F(FE) = |_| {ex = (€12, €x|s) | € is a basis of E,}. (A.1.3)
xzeM
First, the prescription 7 : F(E) — M, w(e,) == z yields a surjective map. If we fix a
basis e, of a fiber E,, every other basis of F, is related to e, by a unique GL(k, K)
transformation. Thus, if e; is a local frame of E on some open subset U; < M, we
may consider the map

¢i : F(E)|y, = Ui x GL(k,K), egm — (z, B), (A.1.4)
where B € GL(k,K) is the unique matrix that induces the change of basis from e;|,
to e;|x. That is,

e;‘x = Bji e (A.1.5)

We can cover M by local frames of E. The induced transition maps between the ¢;
are smooth with respect to the standard differentiable structures on U; x GL(k, K).

UES

Thus, these maps induce a differentiable structure on F'(FE) and provide a bundle
atlas for F(E). Therefore, this indeed is a locally trivial fiber bundle with typical
fiber GL(k, K).

On this bundle we can perform a global change of bases by acting on all possible
bases with the same B € GL(k,K). This defines a map
R :F(F) x GL(k,K) - F(E),
(ex,B) — Rpe, = (leil €y g ,Bj’“ik €julz) (A.1.6)
= ((RB 6)1|x7 R (RB e)k|x)

Note that with this definition, RgoR4 = R4p. This is a special case of a right-action
of a Lie group on a manifold, which we now define in general terms.

Definition A.1.3: Let G be a Lie group and P a manifold. A right-action of G
on P is a smooth map

R:PxG—P, (pg)— Ryp (A.L7)
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that satisfies

or every g € G, the map :P—"P,p— R,p s a diffeomorphism on P.
1) F G, th Ry:P—P R, diff h P
(2) RooRy=Ryy Va,geG.

A left-action of G on P is a smooth map
L:GxP—P, (g9,p) — Lgp (A.1.8)

that satisfies

(1) For every g € G the map Ly : P — P, p+—> Lgp is a diffeomorphism on P.
(2) LaoLyg=Ley Ya,geG.

Heuristically speaking, a right-action is a Lie group anti-homomorphism from G to
the group of diffeomorphisms on P. A left-action is a group homomorphism of these
groups.

Note that by introducing an inverse in the above example of a GL(k,K)-action on
F(F) one obtains a left-action instead of a right-action. One calls a group action
simply transitive if for any p, q € P there exists a unique g € G such that Ryp = q.

Also, the right-action of GL(k,K) on F(E) maps points of one fiber to points in the
same fiber, i.e. it preserves the base point. Even more, given two particular points
in the same fiber, there is precisely one element of GL(k,K) whose action maps the
one point to the other (namely the respective change of basis). Therefore, this right
action is simply transitive on the fibers of F'(E). This is the motivating example of
the following more abstract definition:

Definition A.1.4: A principal fiber bundle is a tuple (P,m, M,G) having the
following properties:

(1) (P,m,M,QG) is a locally trivial fiber bundle, where the typical fiber G is a Lie
group.

(2) There is a right-action R : P x G — P, (p,g) — Ryp of G on P that is simply
transitive on the fibers of P, and that preserves base points, i. e.

moRy=m Vged. (A.1.9)

(3) There exists a G-equivariant bundle atlas {(U;, ¢i)}ien for (P, 7, M,G). That
is, for allpe P, ge G, i € A we may write

¢i(p) = (7(p), ¢i(p)), (A.1.10)

and this satisfies

¢i o Rg(p) = (ﬂ'(p)7 Tg(%‘(ﬁ)))v (A111>
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where 1 : G x G — G, (a,g) — r4(a) = ag is the intrinsic right-multiplication
on the Lie group.

The frame bundle of a vector bundle provides an example of how every vector bundle
gives rise to a principal fiber bundle over the base space. However, this also works
in the opposite direction. We illustrate this using again the frame bundle F(F) of a
vector bundle E over M.

Example A.1.5: In the above example, we constructed F'(F) from E by considering
bases of E/ at every point of M. Every such basis induces an isomorphism of vector
spaces

[e] : KF — Er(e)s (!, ... 0 — g0t (A.1.12)

This is the natural way to construct a vector in E from a basis and linear coefficients,
namely by linear combination. Therefore, one could define an element of E, to be
a tuple X = (e,v), where e € F(E), and v € KF,

This, however, is not a good definition, since the same element of E, can be repre-
sented by several such tuples. The ambiguity is precisely the freedom in the choice
of a basis of the fiber. In particular, we have

X = (e,v)
= e, B, (B v/ (A.1.13)
(Rpe, p(B~")(v)) VBeGL(kK),

where p is the standard representation of GL(k,K) on K¥. All these tuples are a
decomposition of the same vector with respect to different bases of the fiber. Hence,
the correct notion of a vector in E,, is the entity of all these tuples. That is, vectors
in E, are equivalence classes

[e,v] = [Rpe,p(B™1)(v)] VBeGL(k,K). (A.1.14)
These are just all possible ways to decompose a given vector in arbitrary bases of

the fiber.

This concept of gluing vectors from bases and coefficients can be generalized to some
extent. We actually neither need the principal bundle to be a frame bundle, nor do
we need the structure group to be a matrix group, nor the fiber to be a vector space.
Nevertheless, the previous example illustrates and motivates the following definition:

Definition A.1.6: Let (P, 7, M,G) be a principal bundle over M, F a smooth
manifold and p : G x F — F, (g,v) — p(g9)(v) a left-action of G on F. From this
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data one can construct the associated bundle
E=Px@gnlF=(PxF)/~, (A.1.15)

where
(p,v) ~ (V) = 3geG: (V)= (Ryp, plg~")(v)). (A.1.16)

As explained above, in the case of F' being a k-dimensional K-vector space the
equivalence relation can be understood as to divide out precisely the ambiguity in
representing the same vector with respect do different bases. F can then be shown
to be a smooth K-vector bundle of rank k over M.

The link to the formalism of components, which is used in most physics communi-
cations, is given by the fiber isomorphism. Be p € P, and E as defined above. The
fiber isomorphism is the map

[p]: F'— By, v — [p,v]. (A.1.17)

The components, or the local representation, of an element X of F, is then just
given by
v=[p] Y (X) e F. (A.1.18)

If v e I'(E) is a section of an associated bundle and s € 'y (P) is a local section of
P over some U < M, the local representation of v with respect to s is

v:U — F, v(x) = [s(2)] " (72), (A.1.19)

which is a map from U to the space F'. In the other direction, every section v € I'(F)
is locally of the form

vz = [s(x),v(x)] (A.1.20)

for some local section s of P and a locally defined map v : U — F. For F =V a
vector space, it is these locally defined maps with values in vector spaces that are
used commonly in the physics literature.

There is yet another view on sections of associated vector bundles. Let us again
assume we are given a section v € I'(E), where F is a vector bundle associated to
(P, 7, M,G) via the G-representation p on V. We may ask ourselves the question
whether there is a map 4 : P — V, p — 4(p) such that the local representation of
~ with respect to any local section s € I'y(P) coincides with the pullback of 4 by
s. This way, we could transform the complete geometry of sections of non-trivial
associated vector bundles to maps from P to certain vector spaces, which are easier
to handle.

As it turns out, this is possible not only for sections of E, but even for differential
forms on M with values in F. In order to formulate this assertion precisely, we first
need some further notions.
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Definition A.1.7: Let (P, 7, M,G) be a principal bundle and E = P x (g, V an
associated vector bundle. First, the collection of tangent spaces to the fibers of P is
a smooth vector-subbundle of TP. It is called the vertical tangent bundle TP
of P. As m projects every fiber to its base point, we have

TP = ker(my) < TP. (A.1.21)

Now, let w e QF(P,V) be a k-form on P with values in the vector space V.. We say
that w is a horizontal k-form if it vanishes whenever one inserts a vertical vector.
We denote the set of horizontal V -valued k-forms on P by QlfwT(P, V).

Finally, we say that w € QF(P,V) is of type p if

Rj*w=p(g)ow VYgedq, (A.1.22)

and we denote the set of V-valued k-forms of type p on P by QF(P, V)(va).

The complete geometry of E-valued differential forms on M is indeed encoded in
horizontal V-valued differential forms of type p on P, as the following proposition
states:

Proposition A.1.8: In the above situation, there is an isomorphism

U QM E) — QF (P, V) EP) s (), (A.1.23)

hor

where for any p in the fiber over x, i. e. with w(p) = x,
U(p)p = [p] " 0 prw o mupy = [p] ' 0 (7 1) (A.1.24)
This implies that for a local section s € T'yy/(P) we have

(5" (1)e = [s(2)] 7 o (70 8)* )s(a) = [5(2)] ™" © pra, (A.1.25)

which is precisely the local representation of the bundle-valued form p. Note that
for any local section s € 'y (P),

W = [s(@)] o (s"T(p))e = [s(2), 5" (n)a]. (A.1.26)

This glues together the globally defined, bundle-valued form p from the local pull-
backs of its pendant on P. We illustrate this in the following, final example of this
section.

Example A.1.9: Let us consider a vector field X € T(TM) = Q°(M,TM). Recall
that TM = F(TM) X (GL(D,R),p) RP with the standard representation of GL(D,R)
on R” and that the elements of F(T'M) are the bases of the fibers of TM.
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The fiber isomorphism induced by a given basis is just the decomposition of a vector
with respect to that basis. That is, if e € 'y (F(T'M)) a local frame of TM, the
local representation of X can be read off from

Xo = XM () eypp = [e(2), (X' (2),.... X (2)] Vael. (A.1.27)

Further, since X € QO(M,TM), by the above proposition there exists a pendant
of X on F(TM), which we denote by W(X) e Q0 (F(TM),RP)CLDRED) ¢ i
constructed such that its pullback along e : U — F(T'M) gives precisely the same
local representation

(e* U(X))s = (X' (2),...,XP(z)) Vael. (A.1.28)

Thus, one may carry out local calculations completely with the local representations
(X1,...,XP): U - RP, but one has to keep in mind that these still have to form
globally well-defined objects. That is, the local representations depend on the choice
of local sections of principal bundles, and this has to be accounted for carefully.
Usually, this is just the transformation behavior of tensor components, but in the
main text we will encounter an example where this leads to a more complex interplay
of several transformation laws, whose balancing imposes nontrivial conditions (see
sect. 6.1).

In that case, we deal with a two-form with values in the adjoint bundle of a principal
bundle. This is the associated bundle

Ad(P) =P x(c,44) 9- (A.1.29)

For example, consider F € Q%(M, Ad(P)). Then we have W(F) € Q2 (P, g)(@Ad),
and its local representation with respect to a section s € I'y(P) is

s*W(F) e Q*(U, g). (A.1.30)

If we additionally decompose this locally defined two-form with respect to a local
frame e € 'y (F(T'M)), its two-form part is decomposed into its components with
respect to this basis. Thus, the local representative becomes a map

((s*U(F));;) : U — A*RP" ®4. (A.1.31)

Note that, in general, this requires two local sections s and e of the principal bundles
P and F(TM), respectively.

In conclusion, the simplest relation between the local expressions and global forms

is the fact that the local representations are pullbacks of horizontal, vector-space-
valued forms on P with a certain transformation behavior. Both points of view are
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able to overcome the non-triviality of associated vector bundles that, for example,
F takes values in.

The relations between the three ways to view bundle-valued forms on M are depicted
the following diagram:

v
QOF (M, E) Qo (P, V) ()
\ijl
glue o
Components w.r.t. local sections (A.1.32)

A.2 Connections and Covariant Derivatives

To keep this chapter at least a little compact, we do not elaborate on the physical
motivation of connections and their emergence in field theories, but come to their
mathematical construction directly.

Consider a principal bundle (P, 7, M,G). As 7 is a submersion, the fibers are sub-
manifolds of P, i.e. P is foliated into leaves of type GG by . This gives rise to the
vertical tangent bundle TP < TP.

In contrast to this, there is, in general, no foliation of P into leaves of type M
transversal to the first one. (If there was such an embedding of M into P, this
would yield a global section of P, whence, as one can show, P would be trivial).
Nevertheless, there may be a geometric distribution 7"P complementary to TP in
the sense that

TP =T"POT"P. (A.2.1)

We call such a distribution horizontal. This can be chosen to be integrable if and
only if P is trivial.

There are other ways to characterize such a splitting of TP. One of them is to
choose a subspace complementary to TP in T;,P by writing it as the kernel of a
linear map. As the dimension of its kernel must then be D, its image must have
dimension dim(G). This is achieved by considering e.g. A, : T,P — g. Thereby,
we obtain a g-valued 1-form on P.

Definition A.2.1: Be (P,7, M,G) a principal bundle over M. Consider the right
action on P generated by an element of g. As under the right-action every point
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moves smoothly, this will define the vector field tangent to these motions:
. d
prg— F(T P)7 90(5)1? = alo Rexp(t{") b- (A22)

We call (&) the fundamental vector field generated by €.
There are the following equivalent definitions of a connection on P.
(1) A connection on P is a right-invariant, horizontal geometric distribution T"P
on P.

(2) There exists a one-to-one correspondence between connections on P and one-
forms A e QY (P, ) GAD that additionally satisfy

A(p(§)p) =& VEeg, peP. (A.2.3)

The correspondence is given by
TP = ker(A). (A.2.4)

A is called the connection form or gauge field for the corresponding con-
nection, but often we refer to it just as a connection on P. We denote the
set of connection forms on P by C(P).

(3) Let {(U, si)}ien be a covering of M by local sections of P. Then, for every non-
empty U; nUj = Us; # & there is a transition map g5 : Uiy — G, x — gi;(x)
such that

si(x) = Ry, (2) 8(2). (A.2.5)
There exists a one-to-one correspondence between A € C(P) and collections
A; € Q(U;, g) subject to the compatibility relations

A = Ad(gi; ™) 0 Aj + 9i5* pa, (A.2.6)

where ug s the Maurer-Cartan form of the Lie group G. The link to (2) is
given by A; = s} A.

In general, the exterior differential of a horizontal form on P will not be horizontal
anymore. However, a connection provides the tool necessary to deform the differen-

tial such that it preserves horizontality. One simply projects dw to its part acting

on ThP = ker(A).

Definition A.2.2: The covariant exterior differential, or just covariant dif-

ferential, of w e QF(P, V) with respect to the connection A € C(P) is defined as
Daw = dw o prie,a) € Q’fbjrl (P,V). (A.2.7)

That is, applied to Xy, ..., Xy we have

Dyw=dw (prke'r(A) (Xl)a ooy PTker(A) (Xk)) : (A28)
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This derivative can also be written in terms of the connection form. It then turns out
that this modified exterior differential also preserves the type of horizontal forms.

Proposition A.2.3: The covariant differential of w € waT(P, V)(G”’) with respect
to the connection A € C(P) is

Daw=dw+ p(A) A we QiHL(p v)En), (A.2.9)

hor

where for bases {I,} of g and {v,} of V one defines
p(A) A w = p(I,)(vp) ® A* A W". (A.2.10)
The covariant differential of € Q*(M, E) for E = P X(G,p) V is defined as
(dap)s = [s(@), s (Da (1)) ], (A.2.11)

where s € L'y (P) is a local section.
For the local representation of D4 w we thus have

s*(Daw) = d (s*w) + p(s*A) A s*w. (A.2.12)

These are local, V-valued 1-forms. After splitting off the basis of the vector space
we end up with

(s*(Daw))® = d (s*w)® + p(s*A)% A (s*w)°. (A.2.13)

This is the form of the covariant differential of a bundle-valued k-form that is often
used in the physics literature in the context of non-Abelian gauge theories. For
the Levi-Civita connection on TM we have P = F(TM) and we can use a local
frame e € I'y (F(T'M)) as a section of both the frame bundle and the gauge bundle
simultaneously. This fact will be important in section 6.1.
In this case,

pls* A)y = w0, B, (A.2.14)

and the components w,¢; are called the Christoffel symbols of the connection with
respect to the frame e.

The probably most important quantity derived from a connection is its field strength.
Definition A.2.4: The field strength of a connection A € C(P) is
1 o
FA=DjyA=dA+ Sad(A) A Ae Q2. (P,g)&AD (A.2.15)

Its bundle-valued pendant on M is

Fy =0 YFY) e Q*(M, Ad(P)). (A.2.16)
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Its local representations s*F4 e O%(U,g) can be written in terms of the local repre-
sentations s*A € QY (U, g) of A by

1 o
(s*F4) = d(s*A) + 5 ad(s*A) A s*A. (A.2.17)
We list some important properties of this field strength two-form.

Proposition A.2.5: Let (P,m, M,G) be a principal fiber bundle over M, A € C(P)
a connection on P and F4 its field strength. Then the following assertions hold true:

(1) The field strength satisfies the Bianchi identity

DAFA=0. (A.2.18)
(2) The square of the covariant derivative on w € Q’fLm(P, V)(G”’) is
DaDaw = p(FY) A we Q2P v)Gr), (A.2.19)

(8) The field strength satisfies
prrop([X,Y]) = o(FAX,Y)) VX,V eD(T"P). (A.2.20)
Therefore, P admits a flat connection (i. e. F4 = 0) if and only if the geometric
distribution T"P is integrable.

Finally, we introduce the notion of reductions of principal fiber bundles.

Definition A.2.6: A reduction of a principal fiber bundle (P, 7mp, M, H) is a triple
(M A, Q), where (Q,mo, M, G) is a principal G-bundle over M, \: G — H, g — \(g)
is a homomorphism of Lie groups and A : @ — P, q — A(q) is a homomorphsim of
principal fiber bundles, i. e. a map satisfying A o RgQ = Rz\p(g) oA.

This is often depicted as the following commutative diagram:

RQ
"1 T
A x A\ A / M
P x H . p~
R (A.2.21)

One can then show that connections on @ induce connections on P. That is, to
every A € C(Q) there exists an A € C(P) such that

AA=X,0A and A*FA =), 0FA (A.2.22)
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In general, the converse does not hold true, since A*A does not necessarily take
values in \«(g) < b for a generic A € C(P). This is basically the foundation of
the classification of G-structures in section 2.2 and also plays an important role
throughout chapter 6. In this thesis we make extensive use of the special type of
bundle reductions where Q is an embedded principal subbundle of P and A is an
embedding of a Lie subgroup G < H into H, i.e.

RP
"1 e
Lo X l¢ Lo / M
P x H _ p~ P
R (A.2.23)

Note that, in this situation, the right-action of G on Q is just the restriction of the
right-action of H on P to the subgroup G ¢ H and the principal subbundle @ c P.
The extension A of a given A € C(Q) is just the extension to the ambient principal
bundle. Thus, it satisfies (*A = 121|Q = A.

As a final comment, note that such reductions can be constructed from a given
principal bundle. That is, for any homomorphism of Lie groups o : G — H, g — o(g)
one can construct the associated H-bundle

P = Q X(G,Zoo‘) H, (A224)

where £ : H x H — H is the left-multiplication on H. It can be shown that P is a
principal H-bundle, called the o-extension of Q, and that, in this situation, Q is a
bundle reduction of P.
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